Skip to content

  • Projects
  • Groups
  • Snippets
  • Help
    • Loading...
    • Help
    • Contribute to GitLab
  • Sign in / Register
H
healthcarejob
  • Project
    • Project
    • Details
    • Activity
    • Cycle Analytics
  • Issues 1
    • Issues 1
    • List
    • Board
    • Labels
    • Milestones
  • Merge Requests 0
    • Merge Requests 0
  • CI / CD
    • CI / CD
    • Pipelines
    • Jobs
    • Schedules
  • Wiki
    • Wiki
  • Snippets
    • Snippets
  • Members
    • Members
  • Collapse sidebar
  • Activity
  • Create a new issue
  • Jobs
  • Issue Boards
  • Wilfredo Hardman
  • healthcarejob
  • Issues
  • #1

Closed
Open
Opened May 31, 2025 by Wilfredo Hardman@wilfredohardma
  • Report abuse
  • New issue
Report abuse New issue

The Verge Stated It's Technologically Impressive


Announced in 2016, Gym is an open-source Python library designed to help with the advancement of support knowing algorithms. It aimed to standardize how environments are defined in AI research study, making published research study more easily reproducible [24] [144] while offering users with an easy user interface for communicating with these environments. In 2022, new developments of Gym have been moved to the library Gymnasium. [145] [146]
Gym Retro

Released in 2018, Gym Retro is a platform for support learning (RL) research study on computer game [147] utilizing RL algorithms and research study generalization. Prior RL research focused mainly on optimizing representatives to fix single jobs. Gym Retro offers the ability to generalize in between games with similar concepts but different looks.

RoboSumo

Released in 2017, RoboSumo is a virtual world where humanoid metalearning robotic representatives initially do not have understanding of how to even stroll, but are provided the objectives of finding out to move and to push the opposing agent out of the ring. [148] Through this adversarial learning process, the representatives learn how to adapt to changing conditions. When a representative is then gotten rid of from this virtual environment and positioned in a brand-new virtual environment with high winds, the representative braces to remain upright, recommending it had actually learned how to balance in a generalized way. [148] [149] OpenAI's Igor Mordatch argued that competitors between agents could develop an intelligence "arms race" that could increase a representative's ability to function even outside the context of the competitors. [148]
OpenAI 5

OpenAI Five is a group of 5 OpenAI-curated bots utilized in the competitive five-on-five computer game Dota 2, that find out to play against human players at a high skill level entirely through experimental algorithms. Before ending up being a team of 5, the very first public demonstration occurred at The International 2017, the annual best champion tournament for the game, where Dendi, an expert Ukrainian player, lost against a bot in a live one-on-one matchup. [150] [151] After the match, CTO Greg Brockman explained that the bot had found out by playing against itself for 2 weeks of actual time, and that the learning software was a step in the direction of producing software application that can manage complex jobs like a cosmetic surgeon. [152] [153] The system uses a kind of support learning, as the bots find out in time by playing against themselves hundreds of times a day for months, and are rewarded for actions such as killing an enemy and taking map objectives. [154] [155] [156]
By June 2018, the capability of the bots expanded to play together as a full team of 5, and they had the ability to defeat teams of amateur and semi-professional gamers. [157] [154] [158] [159] At The International 2018, OpenAI Five played in 2 exhibit matches against professional gamers, however wound up losing both games. [160] [161] [162] In April 2019, OpenAI Five defeated OG, the ruling world champs of the game at the time, 2:0 in a live exhibition match in San Francisco. [163] [164] The bots' last public look came later on that month, where they played in 42,729 overall games in a four-day open online competition, winning 99.4% of those games. [165]
OpenAI 5's mechanisms in Dota 2's bot gamer reveals the difficulties of AI systems in multiplayer online fight arena (MOBA) video games and how OpenAI Five has actually demonstrated using deep reinforcement knowing (DRL) agents to attain superhuman skills in Dota 2 matches. [166]
Dactyl

Developed in 2018, Dactyl utilizes device discovering to train a Shadow Hand, a human-like robotic hand, to manipulate physical objects. [167] It learns entirely in simulation utilizing the same RL algorithms and training code as OpenAI Five. OpenAI tackled the object orientation issue by using domain randomization, a simulation method which exposes the student to a variety of experiences rather than attempting to fit to truth. The set-up for Dactyl, aside from having motion tracking cameras, likewise has RGB electronic cameras to permit the robot to control an arbitrary object by seeing it. In 2018, OpenAI showed that the system was able to manipulate a cube and an octagonal prism. [168]
In 2019, OpenAI showed that Dactyl could fix a Rubik's Cube. The robot had the ability to resolve the puzzle 60% of the time. Objects like the Rubik's Cube present complex physics that is harder to model. OpenAI did this by enhancing the effectiveness of Dactyl to perturbations by using Automatic Domain Randomization (ADR), a simulation approach of creating gradually harder environments. ADR varies from manual domain randomization by not requiring a human to define randomization ranges. [169]
API

In June 2020, OpenAI announced a multi-purpose API which it said was "for accessing brand-new AI designs developed by OpenAI" to let designers get in touch with it for "any English language AI task". [170] [171]
Text generation

The business has popularized generative pretrained transformers (GPT). [172]
OpenAI's original GPT design ("GPT-1")

The initial paper on generative pre-training of a transformer-based language model was written by Alec Radford and his colleagues, and released in preprint on OpenAI's website on June 11, 2018. [173] It revealed how a generative model of language could obtain world understanding and procedure long-range reliances by pre-training on a diverse corpus with long stretches of adjoining text.

GPT-2

Generative Pre-trained Transformer 2 ("GPT-2") is an unsupervised transformer language design and the follower to OpenAI's original GPT model ("GPT-1"). GPT-2 was announced in February 2019, with only minimal demonstrative variations initially released to the public. The full version of GPT-2 was not right away released due to issue about possible misuse, consisting of applications for composing fake news. [174] Some professionals revealed uncertainty that GPT-2 positioned a substantial risk.

In response to GPT-2, the Allen Institute for Artificial Intelligence responded with a tool to identify "neural phony news". [175] Other scientists, such as Jeremy Howard, warned of "the technology to totally fill Twitter, email, and the web up with reasonable-sounding, context-appropriate prose, which would drown out all other speech and be impossible to filter". [176] In November 2019, OpenAI launched the complete variation of the GPT-2 language design. [177] Several sites host interactive presentations of various circumstances of GPT-2 and other transformer models. [178] [179] [180]
GPT-2's authors argue not being watched language designs to be general-purpose students, illustrated by GPT-2 attaining state-of-the-art accuracy and perplexity on 7 of 8 zero-shot tasks (i.e. the design was not additional trained on any task-specific input-output examples).

The corpus it was trained on, called WebText, contains a little 40 gigabytes of text from URLs shared in Reddit submissions with a minimum of 3 upvotes. It avoids certain issues encoding vocabulary with word tokens by utilizing byte pair encoding. This permits representing any string of characters by encoding both individual characters and multiple-character tokens. [181]
GPT-3

First explained in May 2020, Generative Pre-trained [a] Transformer 3 (GPT-3) is an unsupervised transformer language model and the successor to GPT-2. [182] [183] [184] OpenAI stated that the full version of GPT-3 contained 175 billion specifications, [184] two orders of magnitude larger than the 1.5 billion [185] in the full version of GPT-2 (although GPT-3 models with as few as 125 million specifications were likewise trained). [186]
OpenAI specified that GPT-3 was successful at certain "meta-learning" jobs and hb9lc.org could generalize the purpose of a single input-output pair. The GPT-3 release paper gave examples of translation and cross-linguistic transfer knowing between English and Romanian, and between English and German. [184]
GPT-3 considerably enhanced benchmark results over GPT-2. OpenAI warned that such scaling-up of language models could be approaching or experiencing the basic capability constraints of predictive language designs. [187] Pre-training GPT-3 required numerous thousand petaflop/s-days [b] of calculate, compared to tens of petaflop/s-days for the full GPT-2 model. [184] Like its predecessor, [174] the GPT-3 trained model was not immediately launched to the general public for issues of possible abuse, although OpenAI planned to permit gain access to through a paid cloud API after a two-month complimentary personal beta that began in June 2020. [170] [189]
On September 23, 2020, GPT-3 was certified specifically to Microsoft. [190] [191]
Codex

Announced in mid-2021, Codex is a descendant of GPT-3 that has actually in addition been trained on code from 54 million GitHub repositories, [192] [193] and is the AI powering the code autocompletion tool GitHub Copilot. [193] In August 2021, an API was released in personal beta. [194] According to OpenAI, the model can develop working code in over a dozen programs languages, most successfully in Python. [192]
Several concerns with problems, style flaws and security vulnerabilities were mentioned. [195] [196]
GitHub Copilot has actually been accused of producing copyrighted code, without any author attribution or license. [197]
OpenAI revealed that they would cease assistance for Codex API on March 23, 2023. [198]
GPT-4

On March 14, 2023, OpenAI announced the release of Generative Pre-trained Transformer 4 (GPT-4), efficient in accepting text or image inputs. [199] They announced that the updated technology passed a simulated law school bar examination with a rating around the top 10% of test takers. (By contrast, GPT-3.5 scored around the bottom 10%.) They said that GPT-4 could likewise read, examine or generate as much as 25,000 words of text, and write code in all significant programs languages. [200]
Observers reported that the version of ChatGPT utilizing GPT-4 was an improvement on the previous GPT-3.5-based version, with the caveat that GPT-4 retained a few of the issues with earlier revisions. [201] GPT-4 is also efficient in taking images as input on ChatGPT. [202] OpenAI has actually declined to expose various technical details and stats about GPT-4, such as the accurate size of the model. [203]
GPT-4o

On May 13, 2024, OpenAI announced and launched GPT-4o, which can process and create text, images and audio. [204] GPT-4o attained state-of-the-art lead to voice, multilingual, and vision benchmarks, setting brand-new records in audio speech acknowledgment and translation. [205] [206] It scored 88.7% on the Massive Multitask Language Understanding (MMLU) criteria compared to 86.5% by GPT-4. [207]
On July 18, 2024, OpenAI launched GPT-4o mini, a smaller variation of GPT-4o replacing GPT-3.5 Turbo on the ChatGPT user interface. Its API costs $0.15 per million input tokens and $0.60 per million output tokens, compared to $5 and $15 respectively for GPT-4o. OpenAI anticipates it to be especially beneficial for business, startups and designers seeking to automate services with AI agents. [208]
o1

On September 12, 2024, OpenAI released the o1-preview and o1-mini models, which have actually been designed to take more time to believe about their responses, leading to higher precision. These models are especially efficient in science, coding, and reasoning jobs, and were made available to ChatGPT Plus and Team members. [209] [210] In December 2024, o1-preview was replaced by o1. [211]
o3

On December 20, 2024, OpenAI unveiled o3, the successor of the o1 reasoning design. OpenAI likewise revealed o3-mini, a lighter and much faster variation of OpenAI o3. As of December 21, 2024, this model is not available for public usage. According to OpenAI, they are checking o3 and o3-mini. [212] [213] Until January 10, 2025, safety and security scientists had the chance to obtain early access to these designs. [214] The design is called o3 rather than o2 to avoid confusion with telecoms providers O2. [215]
Deep research study

Deep research is a representative developed by OpenAI, revealed on February 2, 2025. It leverages the abilities of OpenAI's o3 model to carry out comprehensive web browsing, data analysis, and synthesis, providing detailed reports within a timeframe of 5 to thirty minutes. [216] With searching and Python tools made it possible for, it reached an accuracy of 26.6 percent on HLE (Humanity's Last Exam) benchmark. [120]
Image classification

CLIP

Revealed in 2021, CLIP (Contrastive Language-Image Pre-training) is a model that is trained to evaluate the semantic similarity between text and images. It can notably be used for image category. [217]
Text-to-image

DALL-E

Revealed in 2021, DALL-E is a Transformer design that develops images from textual descriptions. [218] DALL-E utilizes a 12-billion-parameter variation of GPT-3 to translate natural language inputs (such as "a green leather purse shaped like a pentagon" or "an isometric view of a sad capybara") and produce matching images. It can develop images of realistic items ("a stained-glass window with an image of a blue strawberry") along with items that do not exist in truth ("a cube with the texture of a porcupine"). As of March 2021, no API or code is available.

DALL-E 2

In April 2022, OpenAI announced DALL-E 2, an updated version of the design with more sensible results. [219] In December 2022, OpenAI published on GitHub software for Point-E, a new rudimentary system for converting a text description into a 3-dimensional design. [220]
DALL-E 3

In September 2023, OpenAI announced DALL-E 3, a more powerful design better able to produce images from intricate descriptions without manual prompt engineering and render intricate details like hands and text. [221] It was released to the general public as a ChatGPT Plus feature in October. [222]
Text-to-video

Sora

Sora is a text-to-video model that can generate videos based on short detailed prompts [223] along with extend existing videos forwards or backwards in time. [224] It can generate videos with resolution approximately 1920x1080 or 1080x1920. The optimum length of generated videos is unidentified.

Sora's advancement team named it after the Japanese word for "sky", to signify its "unlimited imaginative capacity". [223] Sora's innovation is an adjustment of the technology behind the DALL · E 3 text-to-image model. [225] OpenAI trained the system using publicly-available videos as well as copyrighted videos accredited for that purpose, but did not expose the number or the exact sources of the videos. [223]
OpenAI showed some Sora-created high-definition videos to the public on February 15, 2024, mentioning that it could generate videos up to one minute long. It likewise shared a technical report highlighting the approaches used to train the model, and the model's abilities. [225] It acknowledged a few of its drawbacks, including battles simulating intricate physics. [226] Will Douglas Heaven of the MIT Technology Review called the demonstration videos "outstanding", however noted that they should have been cherry-picked and might not represent Sora's common output. [225]
Despite uncertainty from some scholastic leaders following Sora's public demonstration, noteworthy entertainment-industry figures have revealed considerable interest in the innovation's capacity. In an interview, actor/filmmaker Tyler Perry expressed his astonishment at the innovation's ability to generate sensible video from text descriptions, mentioning its potential to revolutionize storytelling and content production. He said that his enjoyment about Sora's possibilities was so strong that he had decided to stop briefly prepare for expanding his Atlanta-based motion picture studio. [227]
Speech-to-text

Whisper

Released in 2022, Whisper is a general-purpose speech recognition model. [228] It is trained on a large dataset of varied audio and is likewise a multi-task model that can carry out multilingual speech acknowledgment along with speech translation and language recognition. [229]
Music generation

MuseNet

Released in 2019, MuseNet is a deep neural net trained to predict subsequent musical notes in MIDI music files. It can create songs with 10 instruments in 15 designs. According to The Verge, a tune created by MuseNet tends to begin fairly but then fall into chaos the longer it plays. [230] [231] In popular culture, preliminary applications of this tool were used as early as 2020 for the web psychological Ben Drowned to produce music for the titular character. [232] [233]
Jukebox

Released in 2020, Jukebox is an open-sourced algorithm to create music with vocals. After training on 1.2 million samples, the system accepts a category, artist, and a snippet of lyrics and outputs song samples. OpenAI mentioned the tunes "show regional musical coherence [and] follow standard chord patterns" but acknowledged that the tunes do not have "familiar bigger musical structures such as choruses that repeat" which "there is a substantial gap" in between Jukebox and human-generated music. The Verge specified "It's technologically excellent, even if the results seem like mushy versions of songs that may feel familiar", while Business Insider specified "remarkably, some of the resulting songs are catchy and sound legitimate". [234] [235] [236]
User interfaces

Debate Game

In 2018, OpenAI launched the Debate Game, which teaches makers to dispute toy problems in front of a human judge. The function is to research whether such an approach may help in auditing AI choices and in establishing explainable AI. [237] [238]
Microscope

Released in 2020, Microscope [239] is a collection of visualizations of every substantial layer and neuron of eight neural network models which are frequently studied in interpretability. [240] Microscope was created to evaluate the features that form inside these neural networks easily. The designs included are AlexNet, VGG-19, different versions of Inception, and various versions of CLIP Resnet. [241]
ChatGPT

Launched in November 2022, ChatGPT is an expert system tool built on top of GPT-3 that offers a conversational interface that permits users to ask concerns in natural language. The system then responds with a response within seconds.

Assignee
Assign to
None
Milestone
None
Assign milestone
Time tracking
None
Due date
No due date
0
Labels
None
Assign labels
  • View project labels
Reference: wilfredohardma/healthcarejob#1