Skip to content

  • Projects
  • Groups
  • Snippets
  • Help
    • Loading...
    • Help
    • Contribute to GitLab
  • Sign in / Register
2
246
  • Project
    • Project
    • Details
    • Activity
    • Cycle Analytics
  • Issues 1
    • Issues 1
    • List
    • Board
    • Labels
    • Milestones
  • Merge Requests 0
    • Merge Requests 0
  • CI / CD
    • CI / CD
    • Pipelines
    • Jobs
    • Schedules
  • Wiki
    • Wiki
  • Snippets
    • Snippets
  • Members
    • Members
  • Collapse sidebar
  • Activity
  • Create a new issue
  • Jobs
  • Issue Boards
  • Jesus Mccloskey
  • 246
  • Issues
  • #1

Closed
Open
Opened Feb 17, 2025 by Jesus Mccloskey@jesus74337467
  • Report abuse
  • New issue
Report abuse New issue

The Verge Stated It's Technologically Impressive


Announced in 2016, Gym is an open-source Python library developed to assist in the development of support knowing algorithms. It aimed to standardize how environments are specified in AI research study, making published research more easily reproducible [24] [144] while supplying users with a simple interface for engaging with these environments. In 2022, new developments of Gym have been transferred to the library Gymnasium. [145] [146]
Gym Retro

Released in 2018, Gym Retro is a platform for support learning (RL) research study on computer game [147] utilizing RL algorithms and research study generalization. Prior RL research study focused mainly on enhancing representatives to solve single tasks. Gym Retro gives the ability to generalize in between video games with comparable concepts but various looks.

RoboSumo

Released in 2017, RoboSumo is a virtual world where humanoid metalearning robot agents initially do not have knowledge of how to even walk, however are given the objectives of discovering to move and to press the opposing agent out of the ring. [148] Through this adversarial knowing procedure, the agents discover how to adjust to changing conditions. When an agent is then eliminated from this virtual environment and put in a new virtual environment with high winds, the representative braces to remain upright, recommending it had actually discovered how to stabilize in a generalized way. [148] [149] OpenAI's Igor Mordatch argued that competition in between representatives might produce an intelligence "arms race" that could increase a representative's capability to operate even outside the context of the competitors. [148]
OpenAI 5

OpenAI Five is a team of 5 OpenAI-curated bots used in the competitive five-on-five computer game Dota 2, that find out to play against human gamers at a high skill level completely through experimental algorithms. Before ending up being a team of 5, the first public presentation occurred at The International 2017, the annual premiere championship competition for the game, where Dendi, an expert Ukrainian player, lost against a bot in a live individually matchup. [150] [151] After the match, CTO Greg Brockman explained that the bot had actually found out by playing against itself for 2 weeks of real time, which the knowing software application was an action in the direction of developing software application that can handle complex jobs like a cosmetic surgeon. [152] [153] The system utilizes a type of support learning, as the bots find out over time by playing against themselves hundreds of times a day for months, and are rewarded for actions such as eliminating an enemy and taking map goals. [154] [155] [156]
By June 2018, the ability of the bots broadened to play together as a complete group of 5, and they had the ability to beat teams of amateur and semi-professional gamers. [157] [154] [158] [159] At The International 2018, OpenAI Five played in two exhibition matches against expert players, however wound up losing both video games. [160] [161] [162] In April 2019, OpenAI Five beat OG, the reigning world champions of the game at the time, 2:0 in a live exhibit match in San Francisco. [163] [164] The bots' last public look came later that month, where they played in 42,729 overall video games in a four-day open online competitors, winning 99.4% of those games. [165]
OpenAI 5 in Dota 2's bot gamer shows the challenges of AI systems in multiplayer online fight arena (MOBA) video games and how OpenAI Five has shown making use of deep support learning (DRL) agents to attain superhuman proficiency in Dota 2 matches. [166]
Dactyl

Developed in 2018, Dactyl utilizes device discovering to train a Shadow Hand, a human-like robot hand, wiki.snooze-hotelsoftware.de to control physical objects. [167] It learns completely in simulation utilizing the exact same RL algorithms and training code as OpenAI Five. OpenAI dealt with the item orientation problem by using domain randomization, a simulation approach which exposes the learner to a variety of experiences instead of trying to fit to truth. The set-up for Dactyl, aside from having motion tracking cameras, likewise has RGB electronic cameras to allow the robot to manipulate an arbitrary object by seeing it. In 2018, OpenAI showed that the system was able to control a cube and an octagonal prism. [168]
In 2019, OpenAI showed that Dactyl might solve a Rubik's Cube. The robot was able to resolve the puzzle 60% of the time. Objects like the Rubik's Cube introduce intricate physics that is harder to design. OpenAI did this by improving the toughness of Dactyl to perturbations by utilizing Automatic Domain Randomization (ADR), a simulation method of creating gradually more hard environments. ADR differs from manual domain randomization by not requiring a human to define randomization varieties. [169]
API

In June 2020, OpenAI announced a multi-purpose API which it said was "for accessing new AI designs developed by OpenAI" to let developers get in touch with it for "any English language AI job". [170] [171]
Text generation

The business has promoted generative pretrained transformers (GPT). [172]
OpenAI's initial GPT design ("GPT-1")

The original paper on generative pre-training of a transformer-based language design was written by Alec Radford and his coworkers, and published in preprint on OpenAI's website on June 11, 2018. [173] It demonstrated how a generative design of language could obtain world understanding and procedure long-range reliances by pre-training on a varied corpus with long stretches of adjoining text.

GPT-2

Generative Pre-trained Transformer 2 ("GPT-2") is an unsupervised transformer language design and the successor to OpenAI's original GPT design ("GPT-1"). GPT-2 was announced in February 2019, with only limited demonstrative versions initially launched to the public. The full version of GPT-2 was not instantly launched due to issue about prospective abuse, including applications for writing phony news. [174] Some professionals expressed uncertainty that GPT-2 postured a substantial danger.

In reaction to GPT-2, the Allen Institute for Artificial Intelligence reacted with a tool to find "neural phony news". [175] Other researchers, such as Jeremy Howard, warned of "the technology to totally fill Twitter, email, and the web up with reasonable-sounding, context-appropriate prose, which would muffle all other speech and be difficult to filter". [176] In November 2019, ratemywifey.com OpenAI launched the complete variation of the GPT-2 language model. [177] Several sites host interactive demonstrations of different instances of GPT-2 and other transformer designs. [178] [179] [180]
GPT-2's authors argue not being watched language designs to be general-purpose learners, shown by GPT-2 attaining state-of-the-art precision and perplexity on 7 of 8 zero-shot jobs (i.e. the model was not more trained on any task-specific input-output examples).

The corpus it was trained on, called WebText, contains a little 40 gigabytes of text from URLs shared in Reddit submissions with at least 3 upvotes. It avoids certain issues encoding vocabulary with word tokens by utilizing byte pair encoding. This permits representing any string of characters by encoding both individual characters and multiple-character tokens. [181]
GPT-3

First explained in May 2020, Generative Pre-trained [a] Transformer 3 (GPT-3) is an unsupervised transformer language model and the follower to GPT-2. [182] [183] [184] OpenAI specified that the full variation of GPT-3 contained 175 billion specifications, [184] two orders of magnitude larger than the 1.5 billion [185] in the full variation of GPT-2 (although GPT-3 models with as few as 125 million specifications were also trained). [186]
OpenAI mentioned that GPT-3 prospered at certain "meta-learning" tasks and could generalize the purpose of a single input-output pair. The GPT-3 release paper gave examples of translation and cross-linguistic transfer knowing between English and Romanian, and between English and German. [184]
GPT-3 dramatically improved benchmark results over GPT-2. OpenAI cautioned that such scaling-up of language designs could be approaching or coming across the essential ability constraints of predictive language models. [187] Pre-training GPT-3 required several thousand yewiki.org petaflop/s-days [b] of compute, compared to 10s of petaflop/s-days for the complete GPT-2 model. [184] Like its predecessor, [174] the GPT-3 trained model was not right away released to the general public for concerns of possible abuse, although OpenAI planned to permit gain access to through a paid cloud API after a two-month complimentary personal beta that began in June 2020. [170] [189]
On September 23, 2020, GPT-3 was licensed exclusively to Microsoft. [190] [191]
Codex

Announced in mid-2021, Codex is a descendant of GPT-3 that has actually furthermore been trained on code from 54 million GitHub repositories, [192] [193] and is the AI powering the code autocompletion tool GitHub Copilot. [193] In August 2021, an API was launched in private beta. [194] According to OpenAI, the design can develop working code in over a dozen programs languages, the majority of effectively in Python. [192]
Several concerns with glitches, design flaws and security vulnerabilities were cited. [195] [196]
GitHub Copilot has actually been implicated of producing copyrighted code, with no author attribution or license. [197]
OpenAI announced that they would terminate assistance for Codex API on March 23, 2023. [198]
GPT-4

On March 14, 2023, OpenAI announced the release of Generative Pre-trained Transformer 4 (GPT-4), it-viking.ch efficient in accepting text or image inputs. [199] They announced that the upgraded technology passed a simulated law school bar test with a rating around the top 10% of test takers. (By contrast, GPT-3.5 scored around the bottom 10%.) They said that GPT-4 could also read, analyze or create up to 25,000 words of text, and compose code in all significant shows languages. [200]
Observers reported that the model of ChatGPT using GPT-4 was an improvement on the previous GPT-3.5-based version, with the caveat that GPT-4 retained a few of the problems with earlier modifications. [201] GPT-4 is likewise efficient in taking images as input on ChatGPT. [202] OpenAI has actually declined to expose numerous technical details and statistics about GPT-4, disgaeawiki.info such as the precise size of the model. [203]
GPT-4o

On May 13, 2024, OpenAI announced and launched GPT-4o, which can process and create text, images and audio. [204] GPT-4o attained cutting edge lead to voice, multilingual, and vision criteria, setting new records in audio speech recognition and translation. [205] [206] It scored 88.7% on the Massive Multitask Language Understanding (MMLU) benchmark compared to 86.5% by GPT-4. [207]
On July 18, 2024, OpenAI launched GPT-4o mini, a smaller sized variation of GPT-4o changing GPT-3.5 Turbo on the ChatGPT interface. Its API costs $0.15 per million input tokens and $0.60 per million output tokens, compared to $5 and $15 respectively for GPT-4o. OpenAI expects it to be especially beneficial for business, start-ups and developers seeking to automate services with AI representatives. [208]
o1

On September 12, 2024, OpenAI released the o1-preview and o1-mini models, which have been created to take more time to believe about their actions, resulting in greater precision. These models are particularly efficient in science, coding, and thinking jobs, and were made available to ChatGPT Plus and Employee. [209] [210] In December 2024, o1-preview was replaced by o1. [211]
o3

On December 20, 2024, OpenAI unveiled o3, the follower of the o1 thinking model. OpenAI also revealed o3-mini, a lighter and much faster version of OpenAI o3. Since December 21, 2024, this design is not available for public use. According to OpenAI, they are evaluating o3 and o3-mini. [212] [213] Until January 10, 2025, surgiteams.com security and security scientists had the opportunity to obtain early access to these designs. [214] The design is called o3 instead of o2 to avoid confusion with telecommunications providers O2. [215]
Deep research study

Deep research is a representative established by OpenAI, unveiled on February 2, 2025. It leverages the abilities of OpenAI's o3 model to perform substantial web surfing, data analysis, and synthesis, delivering detailed reports within a timeframe of 5 to thirty minutes. [216] With browsing and Python tools enabled, it reached an accuracy of 26.6 percent on HLE (Humanity's Last Exam) standard. [120]
Image classification

CLIP

Revealed in 2021, CLIP (Contrastive Language-Image Pre-training) is a design that is trained to evaluate the semantic similarity between text and images. It can especially be utilized for image category. [217]
Text-to-image

DALL-E

Revealed in 2021, DALL-E is a Transformer design that creates images from textual descriptions. [218] DALL-E uses a 12-billion-parameter variation of GPT-3 to analyze natural language inputs (such as "a green leather purse shaped like a pentagon" or "an isometric view of a sad capybara") and create matching images. It can develop pictures of sensible things ("a stained-glass window with a picture of a blue strawberry") as well as objects that do not exist in truth ("a cube with the texture of a porcupine"). Since March 2021, no API or code is available.

DALL-E 2

In April 2022, OpenAI announced DALL-E 2, an upgraded variation of the model with more sensible outcomes. [219] In December 2022, OpenAI published on GitHub software application for Point-E, a new rudimentary system for converting a text description into a 3-dimensional model. [220]
DALL-E 3

In September 2023, OpenAI announced DALL-E 3, a more powerful design better able to produce images from complex descriptions without manual timely engineering and higgledy-piggledy.xyz render intricate details like hands and text. [221] It was launched to the general public as a ChatGPT Plus feature in October. [222]
Text-to-video

Sora

Sora is a text-to-video design that can create videos based on short detailed prompts [223] along with extend existing videos forwards or in reverse in time. [224] It can produce videos with resolution up to 1920x1080 or 1080x1920. The optimum length of created videos is unidentified.

Sora's development team called it after the Japanese word for "sky", to symbolize its "limitless creative potential". [223] Sora's technology is an adjustment of the technology behind the DALL · E 3 text-to-image model. [225] OpenAI trained the system utilizing publicly-available videos in addition to copyrighted videos accredited for that purpose, but did not reveal the number or the specific sources of the videos. [223]
OpenAI demonstrated some Sora-created high-definition videos to the general public on February 15, 2024, mentioning that it might produce videos approximately one minute long. It likewise shared a technical report highlighting the methods utilized to train the model, and the model's abilities. [225] It acknowledged some of its imperfections, consisting of battles replicating intricate physics. [226] Will Douglas Heaven of the MIT Technology Review called the presentation videos "outstanding", but noted that they must have been cherry-picked and may not represent Sora's typical output. [225]
Despite uncertainty from some academic leaders following Sora's public demo, noteworthy entertainment-industry figures have actually revealed considerable interest in the innovation's capacity. In an interview, actor/filmmaker Tyler Perry revealed his awe at the technology's ability to generate reasonable video from text descriptions, citing its prospective to change storytelling and material production. He said that his excitement about Sora's possibilities was so strong that he had chosen to pause prepare for broadening his Atlanta-based motion picture studio. [227]
Speech-to-text

Whisper

Released in 2022, Whisper is a general-purpose speech recognition design. [228] It is trained on a big dataset of varied audio and is likewise a multi-task model that can carry out multilingual speech acknowledgment as well as speech translation and language identification. [229]
Music generation

MuseNet

Released in 2019, MuseNet is a deep neural net trained to forecast subsequent musical notes in MIDI music files. It can create songs with 10 instruments in 15 styles. According to The Verge, a tune created by MuseNet tends to start fairly however then fall into chaos the longer it plays. [230] [231] In pop culture, initial applications of this tool were used as early as 2020 for the internet mental thriller Ben Drowned to create music for the titular character. [232] [233]
Jukebox

Released in 2020, Jukebox is an open-sourced algorithm to produce music with vocals. After training on 1.2 million samples, the system accepts a category, artist, and a snippet of lyrics and outputs song samples. OpenAI stated the songs "reveal local musical coherence [and] follow traditional chord patterns" however acknowledged that the tunes lack "familiar larger musical structures such as choruses that repeat" which "there is a considerable space" in between Jukebox and human-generated music. The Verge specified "It's highly excellent, even if the results seem like mushy variations of tunes that may feel familiar", while Business Insider stated "surprisingly, a few of the resulting tunes are appealing and sound genuine". [234] [235] [236]
User user interfaces

Debate Game

In 2018, OpenAI released the Debate Game, which teaches devices to debate toy problems in front of a human judge. The function is to research whether such a method may assist in auditing AI decisions and in developing explainable AI. [237] [238]
Microscope

Released in 2020, Microscope [239] is a collection of visualizations of every substantial layer and nerve cell of 8 neural network models which are frequently studied in interpretability. [240] Microscope was created to evaluate the features that form inside these neural networks easily. The models consisted of are AlexNet, VGG-19, various versions of Inception, and different variations of CLIP Resnet. [241]
ChatGPT

Launched in November 2022, ChatGPT is a synthetic intelligence tool constructed on top of GPT-3 that provides a conversational user interface that allows users to ask questions in natural language. The system then reacts with an answer within seconds.

Assignee
Assign to
None
Milestone
None
Assign milestone
Time tracking
None
Due date
No due date
0
Labels
None
Assign labels
  • View project labels
Reference: jesus74337467/246#1