Artificial General Intelligence
Artificial basic intelligence (AGI) is a kind of artificial intelligence (AI) that matches or goes beyond human cognitive abilities across a vast array of cognitive jobs. This contrasts with narrow AI, which is limited to specific tasks. [1] Artificial superintelligence (ASI), on the other hand, refers to AGI that significantly goes beyond human cognitive abilities. AGI is considered one of the definitions of strong AI.
Creating AGI is a primary goal of AI research study and of business such as OpenAI [2] and Meta. [3] A 2020 study determined 72 active AGI research study and development projects throughout 37 nations. [4]
The timeline for accomplishing AGI remains a topic of ongoing argument amongst researchers and specialists. Since 2023, some argue that it might be possible in years or decades; others keep it might take a century or longer; a minority think it may never be achieved; and another minority claims that it is currently here. [5] [6] Notable AI scientist Geoffrey Hinton has actually expressed concerns about the quick progress towards AGI, suggesting it might be accomplished faster than lots of expect. [7]
There is debate on the exact definition of AGI and relating to whether contemporary big language models (LLMs) such as GPT-4 are early forms of AGI. [8] AGI is a common subject in sci-fi and futures research studies. [9] [10]
Contention exists over whether AGI represents an existential risk. [11] [12] [13] Many specialists on AI have specified that mitigating the danger of human extinction positioned by AGI should be a global concern. [14] [15] Others discover the development of AGI to be too remote to provide such a risk. [16] [17]
Terminology
AGI is also known as strong AI, [18] [19] complete AI, [20] human-level AI, [5] human-level intelligent AI, or basic smart action. [21]
Some academic sources schedule the term "strong AI" for computer programs that experience life or consciousness. [a] In contrast, weak AI (or narrow AI) is able to resolve one specific problem but does not have general cognitive abilities. [22] [19] Some academic sources use "weak AI" to refer more broadly to any programs that neither experience awareness nor have a mind in the same sense as humans. [a]
Related concepts include artificial superintelligence and transformative AI. A synthetic superintelligence (ASI) is a theoretical kind of AGI that is far more than people, [23] while the concept of transformative AI connects to AI having a large influence on society, for example, comparable to the agricultural or industrial transformation. [24]
A structure for classifying AGI in levels was proposed in 2023 by Google DeepMind researchers. They define 5 levels of AGI: emerging, qualified, specialist, virtuoso, and superhuman. For example, a proficient AGI is defined as an AI that exceeds 50% of proficient grownups in a vast array of non-physical jobs, and a superhuman AGI (i.e. a synthetic superintelligence) is likewise specified however with a limit of 100%. They consider large language models like ChatGPT or LLaMA 2 to be circumstances of emerging AGI. [25]
Characteristics
Various popular definitions of intelligence have actually been proposed. One of the leading propositions is the Turing test. However, there are other popular meanings, and some researchers disagree with the more popular approaches. [b]
Intelligence traits
Researchers generally hold that intelligence is needed to do all of the following: [27]
factor, usage technique, solve puzzles, and make judgments under uncertainty
represent knowledge, including typical sense understanding
strategy
discover
- communicate in natural language
- if necessary, incorporate these abilities in conclusion of any given objective
Many interdisciplinary methods (e.g. cognitive science, computational intelligence, and choice making) think about extra characteristics such as imagination (the ability to form novel mental images and concepts) [28] and autonomy. [29]
Computer-based systems that display a lot of these abilities exist (e.g. see computational creativity, automated thinking, decision assistance system, robot, evolutionary calculation, intelligent representative). There is argument about whether modern-day AI systems have them to an adequate degree.
Physical characteristics
Other capabilities are thought about preferable in intelligent systems, as they may affect intelligence or aid in its expression. These consist of: [30]
- the ability to sense (e.g. see, hear, and so on), and - the ability to act (e.g. relocation and manipulate items, modification place to explore, etc).
This includes the capability to discover and react to danger. [31]
Although the ability to sense (e.g. see, hear, etc) and the capability to act (e.g. move and manipulate things, modification location to check out, and so on) can be preferable for some intelligent systems, [30] these physical capabilities are not strictly required for an entity to certify as AGI-particularly under the thesis that big language designs (LLMs) might already be or end up being AGI. Even from a less positive perspective on LLMs, there is no firm requirement for an AGI to have a human-like form; being a silicon-based computational system is enough, supplied it can process input (language) from the external world in location of human senses. This interpretation aligns with the understanding that AGI has never been proscribed a particular physical embodiment and therefore does not require a capability for locomotion or conventional "eyes and ears". [32]
Tests for human-level AGI
Several tests implied to confirm human-level AGI have actually been thought about, consisting of: [33] [34]
The concept of the test is that the maker needs to attempt and pretend to be a man, by answering questions put to it, and it will just pass if the pretence is fairly persuading. A significant part of a jury, who need to not be expert about makers, need to be taken in by the pretence. [37]
AI-complete issues
An issue is informally called "AI-complete" or "AI-hard" if it is believed that in order to fix it, one would require to execute AGI, because the solution is beyond the abilities of a purpose-specific algorithm. [47]
There are many problems that have been conjectured to need basic intelligence to resolve as well as humans. Examples consist of computer system vision, natural language understanding, grandtribunal.org and dealing with unexpected situations while solving any real-world problem. [48] Even a particular task like translation needs a maker to check out and compose in both languages, follow the author's argument (reason), understand the context (knowledge), and consistently replicate the author's initial intent (social intelligence). All of these issues need to be resolved simultaneously in order to reach human-level device performance.
However, much of these jobs can now be carried out by modern-day large language designs. According to Stanford University's 2024 AI index, AI has reached human-level performance on numerous benchmarks for checking out understanding and visual reasoning. [49]
History
Classical AI
Modern AI research began in the mid-1950s. [50] The first generation of AI researchers were encouraged that artificial general intelligence was possible which it would exist in simply a few years. [51] AI leader Herbert A. Simon composed in 1965: "makers will be capable, within twenty years, of doing any work a guy can do." [52]
Their predictions were the motivation for Stanley Kubrick and Arthur C. Clarke's character HAL 9000, who embodied what AI researchers believed they might produce by the year 2001. AI pioneer Marvin Minsky was an expert [53] on the job of making HAL 9000 as realistic as possible according to the agreement forecasts of the time. He stated in 1967, "Within a generation ... the problem of creating 'expert system' will considerably be fixed". [54]
Several classical AI tasks, such as Doug Lenat's Cyc task (that began in 1984), and Allen Newell's Soar project, were directed at AGI.
However, in the early 1970s, it became apparent that scientists had grossly ignored the problem of the task. Funding firms ended up being hesitant of AGI and put scientists under increasing pressure to produce beneficial "applied AI". [c] In the early 1980s, Japan's Fifth Generation Computer Project revived interest in AGI, setting out a ten-year timeline that included AGI goals like "carry on a table talk". [58] In reaction to this and the success of expert systems, both industry and federal government pumped money into the field. [56] [59] However, self-confidence in AI amazingly collapsed in the late 1980s, and the objectives of the Fifth Generation Computer Project were never fulfilled. [60] For the 2nd time in twenty years, AI scientists who forecasted the impending accomplishment of AGI had actually been mistaken. By the 1990s, AI scientists had a track record for making vain pledges. They became unwilling to make predictions at all [d] and prevented reference of "human level" expert system for akropolistravel.com worry of being labeled "wild-eyed dreamer [s]. [62]
Narrow AI research study
In the 1990s and early 21st century, mainstream AI attained industrial success and academic respectability by focusing on particular sub-problems where AI can produce verifiable results and industrial applications, such as speech recognition and suggestion algorithms. [63] These "applied AI" systems are now used thoroughly throughout the innovation market, and research study in this vein is greatly funded in both academia and market. Since 2018 [update], development in this field was considered an emerging trend, and a fully grown phase was anticipated to be reached in more than 10 years. [64]
At the millenium, many mainstream AI researchers [65] hoped that strong AI might be developed by integrating programs that solve numerous sub-problems. Hans Moravec composed in 1988:
I am positive that this bottom-up path to expert system will one day satisfy the conventional top-down route more than half way, ready to supply the real-world proficiency and the commonsense knowledge that has been so frustratingly elusive in thinking programs. Fully intelligent machines will result when the metaphorical golden spike is driven unifying the 2 efforts. [65]
However, even at the time, this was challenged. For instance, Stevan Harnad of Princeton University concluded his 1990 paper on the sign grounding hypothesis by mentioning:
The expectation has typically been voiced that "top-down" (symbolic) approaches to modeling cognition will in some way satisfy "bottom-up" (sensory) approaches someplace in between. If the grounding considerations in this paper are valid, then this expectation is hopelessly modular and there is actually just one practical route from sense to symbols: from the ground up. A free-floating symbolic level like the software level of a computer system will never ever be reached by this route (or vice versa) - nor is it clear why we need to even try to reach such a level, because it looks as if getting there would just amount to uprooting our symbols from their intrinsic significances (thereby merely decreasing ourselves to the practical equivalent of a programmable computer). [66]
Modern synthetic basic intelligence research study
The term "artificial general intelligence" was utilized as early as 1997, by Mark Gubrud [67] in a discussion of the ramifications of fully automated military production and operations. A mathematical formalism of AGI was proposed by Marcus Hutter in 2000. Named AIXI, the proposed AGI agent maximises "the ability to please objectives in a large variety of environments". [68] This type of AGI, defined by the capability to maximise a mathematical meaning of intelligence instead of display human-like behaviour, [69] was also called universal expert system. [70]
The term AGI was re-introduced and popularized by Shane Legg and Ben Goertzel around 2002. [71] AGI research activity in 2006 was explained by Pei Wang and Ben Goertzel [72] as "producing publications and preliminary outcomes". The very first summertime school in AGI was arranged in Xiamen, China in 2009 [73] by the Xiamen university's Artificial Brain Laboratory and OpenCog. The very first university course was given up 2010 [74] and 2011 [75] at Plovdiv University, Bulgaria by Todor Arnaudov. MIT presented a course on AGI in 2018, arranged by Lex Fridman and featuring a variety of guest lecturers.
As of 2023 [update], a little number of computer researchers are active in AGI research, and numerous add to a series of AGI conferences. However, progressively more researchers have an interest in open-ended learning, [76] [77] which is the idea of allowing AI to continuously learn and innovate like human beings do.
Feasibility
Since 2023, the development and potential achievement of AGI stays a subject of intense argument within the AI neighborhood. While traditional consensus held that AGI was a distant goal, recent advancements have led some scientists and industry figures to claim that early types of AGI might currently exist. [78] AI pioneer Herbert A. Simon speculated in 1965 that "makers will be capable, within twenty years, photorum.eclat-mauve.fr of doing any work a guy can do". This prediction failed to come true. Microsoft co-founder Paul Allen believed that such intelligence is not likely in the 21st century because it would require "unforeseeable and essentially unforeseeable advancements" and a "scientifically deep understanding of cognition". [79] Writing in The Guardian, roboticist Alan Winfield claimed the gulf between modern-day computing and human-level expert system is as large as the gulf between present space flight and practical faster-than-light spaceflight. [80]
A further obstacle is the lack of clearness in specifying what intelligence requires. Does it need consciousness? Must it display the capability to set goals in addition to pursue them? Is it simply a matter of scale such that if model sizes increase adequately, intelligence will emerge? Are facilities such as preparation, reasoning, and causal understanding needed? Does intelligence need explicitly replicating the brain and its specific professors? Does it need emotions? [81]
Most AI researchers believe strong AI can be accomplished in the future, but some thinkers, like Hubert Dreyfus and Roger Penrose, deny the possibility of attaining strong AI. [82] [83] John McCarthy is amongst those who believe human-level AI will be accomplished, however that the present level of development is such that a date can not properly be forecasted. [84] AI experts' views on the expediency of AGI wax and subside. Four polls performed in 2012 and 2013 suggested that the mean price quote amongst professionals for when they would be 50% confident AGI would get here was 2040 to 2050, depending upon the poll, with the mean being 2081. Of the specialists, 16.5% addressed with "never" when asked the same question however with a 90% self-confidence instead. [85] [86] Further existing AGI progress considerations can be found above Tests for verifying human-level AGI.
A report by Stuart Armstrong and Kaj Sotala of the Machine Intelligence Research Institute found that "over [a] 60-year amount of time there is a strong bias towards predicting the arrival of human-level AI as between 15 and 25 years from the time the forecast was made". They examined 95 forecasts made between 1950 and 2012 on when human-level AI will happen. [87]
In 2023, Microsoft researchers released a detailed examination of GPT-4. They concluded: "Given the breadth and depth of GPT-4's capabilities, we think that it could fairly be considered as an early (yet still incomplete) version of a synthetic basic intelligence (AGI) system." [88] Another study in 2023 reported that GPT-4 surpasses 99% of people on the Torrance tests of creativity. [89] [90]
Blaise Agüera y Arcas and Peter Norvig composed in 2023 that a significant level of general intelligence has actually currently been attained with frontier models. They composed that hesitation to this view originates from four primary factors: a "healthy suspicion about metrics for AGI", an "ideological commitment to alternative AI theories or methods", a "devotion to human (or biological) exceptionalism", or a "concern about the financial implications of AGI". [91]
2023 likewise marked the development of large multimodal models (large language models capable of processing or generating multiple modalities such as text, audio, and images). [92]
In 2024, OpenAI released o1-preview, the very first of a series of designs that "spend more time believing before they respond". According to Mira Murati, this capability to believe before reacting represents a new, extra paradigm. It enhances model outputs by spending more computing power when creating the answer, whereas the model scaling paradigm enhances outputs by increasing the model size, training data and training compute power. [93] [94]
An OpenAI worker, Vahid Kazemi, declared in 2024 that the business had achieved AGI, specifying, "In my opinion, we have actually currently accomplished AGI and it's even more clear with O1." Kazemi clarified that while the AI is not yet "better than any human at any task", it is "much better than most human beings at many jobs." He likewise addressed criticisms that big language models (LLMs) merely follow predefined patterns, comparing their knowing procedure to the clinical technique of observing, hypothesizing, and validating. These statements have actually sparked debate, as they count on a broad and non-traditional meaning of AGI-traditionally understood as AI that matches human intelligence throughout all domains. Critics argue that, while OpenAI's designs show exceptional versatility, they might not totally satisfy this standard. Notably, Kazemi's remarks came quickly after OpenAI removed "AGI" from the regards to its collaboration with Microsoft, triggering speculation about the company's strategic intentions. [95]
Timescales
Progress in expert system has traditionally gone through durations of quick development separated by periods when progress appeared to stop. [82] Ending each hiatus were essential advances in hardware, software or both to produce area for further development. [82] [98] [99] For instance, the computer system hardware readily available in the twentieth century was not enough to carry out deep learning, which needs great deals of GPU-enabled CPUs. [100]
In the intro to his 2006 book, [101] Goertzel states that quotes of the time needed before a genuinely versatile AGI is built vary from ten years to over a century. Since 2007 [update], the consensus in the AGI research community appeared to be that the timeline gone over by Ray Kurzweil in 2005 in The Singularity is Near [102] (i.e. between 2015 and 2045) was plausible. [103] Mainstream AI scientists have provided a large range of opinions on whether progress will be this quick. A 2012 meta-analysis of 95 such viewpoints found a bias towards anticipating that the start of AGI would occur within 16-26 years for modern and historic predictions alike. That paper has actually been slammed for how it classified opinions as professional or non-expert. [104]
In 2012, Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton developed a neural network called AlexNet, which won the ImageNet competition with a top-5 test error rate of 15.3%, considerably much better than the second-best entry's rate of 26.3% (the standard approach used a weighted sum of scores from various pre-defined classifiers). [105] AlexNet was considered as the preliminary ground-breaker of the current deep learning wave. [105]
In 2017, researchers Feng Liu, Yong Shi, and Ying Liu carried out intelligence tests on openly readily available and easily available weak AI such as Google AI, Apple's Siri, and others. At the optimum, these AIs reached an IQ worth of about 47, which corresponds roughly to a six-year-old child in first grade. A grownup comes to about 100 usually. Similar tests were performed in 2014, with the IQ score reaching an optimum worth of 27. [106] [107]
In 2020, OpenAI established GPT-3, a language model efficient in performing lots of varied jobs without particular training. According to Gary Grossman in a VentureBeat article, while there is consensus that GPT-3 is not an example of AGI, it is considered by some to be too advanced to be categorized as a narrow AI system. [108]
In the very same year, Jason Rohrer utilized his GPT-3 account to develop a chatbot, and supplied a chatbot-developing platform called "Project December". OpenAI requested for modifications to the chatbot to adhere to their safety guidelines; Rohrer detached Project December from the GPT-3 API. [109]
In 2022, DeepMind established Gato, a "general-purpose" system efficient in performing more than 600 different tasks. [110]
In 2023, Microsoft Research released a study on an early variation of OpenAI's GPT-4, contending that it showed more general intelligence than previous AI models and showed human-level performance in jobs spanning multiple domains, such as mathematics, coding, and law. This research stimulated a dispute on whether GPT-4 might be considered an early, incomplete version of artificial basic intelligence, emphasizing the need for additional exploration and assessment of such systems. [111]
In 2023, the AI scientist Geoffrey Hinton stated that: [112]
The idea that this stuff could in fact get smarter than people - a few people thought that, [...] But a lot of people believed it was way off. And I believed it was method off. I thought it was 30 to 50 years and even longer away. Obviously, I no longer believe that.
In May 2023, Demis Hassabis likewise stated that "The progress in the last couple of years has been quite incredible", which he sees no reason why it would slow down, expecting AGI within a years and even a few years. [113] In March 2024, Nvidia's CEO, Jensen Huang, specified his expectation that within five years, AI would be capable of passing any test at least in addition to people. [114] In June 2024, the AI researcher Leopold Aschenbrenner, a previous OpenAI employee, estimated AGI by 2027 to be "strikingly possible". [115]
Whole brain emulation
While the advancement of transformer designs like in ChatGPT is thought about the most promising path to AGI, [116] [117] entire brain emulation can act as an alternative method. With entire brain simulation, a brain model is built by scanning and mapping a biological brain in detail, and then copying and mimicing it on a computer system or another computational device. The simulation design must be sufficiently devoted to the original, so that it acts in practically the exact same method as the initial brain. [118] Whole brain emulation is a kind of brain simulation that is talked about in computational neuroscience and neuroinformatics, and for medical research purposes. It has actually been talked about in expert system research [103] as a method to strong AI. Neuroimaging innovations that might provide the needed in-depth understanding are improving quickly, and futurist Ray Kurzweil in the book The Singularity Is Near [102] anticipates that a map of adequate quality will end up being readily available on a similar timescale to the computing power needed to replicate it.
Early estimates
For low-level brain simulation, a really powerful cluster of computer systems or GPUs would be needed, given the huge quantity of synapses within the human brain. Each of the 1011 (one hundred billion) neurons has on typical 7,000 synaptic connections (synapses) to other neurons. The brain of a three-year-old kid has about 1015 synapses (1 quadrillion). This number decreases with age, stabilizing by their adult years. Estimates differ for an adult, ranging from 1014 to 5 × 1014 synapses (100 to 500 trillion). [120] A price quote of the brain's processing power, based upon a basic switch model for neuron activity, is around 1014 (100 trillion) synaptic updates per second (SUPS). [121]
In 1997, Kurzweil looked at various quotes for the hardware needed to equal the human brain and embraced a figure of 1016 calculations per 2nd (cps). [e] (For comparison, if a "calculation" was comparable to one "floating-point operation" - a measure used to rate present supercomputers - then 1016 "computations" would be comparable to 10 petaFLOPS, achieved in 2011, while 1018 was accomplished in 2022.) He utilized this figure to forecast the required hardware would be readily available sometime in between 2015 and 2025, if the rapid development in computer power at the time of writing continued.
Current research
The Human Brain Project, an EU-funded effort active from 2013 to 2023, has actually developed a particularly detailed and publicly available atlas of the human brain. [124] In 2023, scientists from Duke University performed a high-resolution scan of a mouse brain.
Criticisms of simulation-based approaches
The synthetic nerve cell model presumed by Kurzweil and used in lots of existing artificial neural network implementations is simple compared with biological nerve cells. A brain simulation would likely need to catch the in-depth cellular behaviour of biological neurons, presently comprehended only in broad outline. The overhead introduced by complete modeling of the biological, chemical, and physical information of neural behaviour (specifically on a molecular scale) would need computational powers numerous orders of magnitude larger than Kurzweil's price quote. In addition, the estimates do not account for glial cells, which are understood to contribute in cognitive procedures. [125]
A basic criticism of the simulated brain method originates from embodied cognition theory which asserts that human personification is an important aspect of human intelligence and is needed to ground meaning. [126] [127] If this theory is right, any fully practical brain design will require to include more than simply the neurons (e.g., a robotic body). Goertzel [103] proposes virtual personification (like in metaverses like Second Life) as an alternative, but it is unidentified whether this would suffice.
Philosophical perspective
"Strong AI" as defined in philosophy
In 1980, thinker John Searle coined the term "strong AI" as part of his Chinese space argument. [128] He proposed a distinction between two hypotheses about expert system: [f]
Strong AI hypothesis: An expert system system can have "a mind" and "consciousness". Weak AI hypothesis: A synthetic intelligence system can (only) imitate it thinks and has a mind and awareness.
The very first one he called "strong" since it makes a stronger statement: it presumes something special has taken place to the machine that surpasses those capabilities that we can evaluate. The behaviour of a "weak AI" maker would be specifically identical to a "strong AI" maker, but the latter would also have subjective conscious experience. This use is likewise common in scholastic AI research study and textbooks. [129]
In contrast to Searle and traditional AI, some futurists such as Ray Kurzweil utilize the term "strong AI" to imply "human level synthetic general intelligence". [102] This is not the like Searle's strong AI, unless it is presumed that awareness is necessary for human-level AGI. Academic theorists such as Searle do not think that holds true, and to most synthetic intelligence scientists the question is out-of-scope. [130]
Mainstream AI is most interested in how a program behaves. [131] According to Russell and Norvig, "as long as the program works, they do not care if you call it real or a simulation." [130] If the program can behave as if it has a mind, then there is no need to know if it actually has mind - undoubtedly, there would be no way to tell. For AI research study, Searle's "weak AI hypothesis" is comparable to the declaration "synthetic general intelligence is possible". Thus, according to Russell and Norvig, "most AI scientists take the weak AI hypothesis for approved, and do not care about the strong AI hypothesis." [130] Thus, for scholastic AI research, "Strong AI" and "AGI" are two various things.
Consciousness
Consciousness can have different meanings, and some aspects play considerable roles in sci-fi and the principles of synthetic intelligence:
Sentience (or "incredible consciousness"): The ability to "feel" understandings or feelings subjectively, rather than the ability to factor about perceptions. Some philosophers, such as David Chalmers, use the term "awareness" to refer solely to incredible consciousness, which is approximately equivalent to life. [132] Determining why and how subjective experience emerges is referred to as the hard problem of awareness. [133] Thomas Nagel explained in 1974 that it "feels like" something to be mindful. If we are not mindful, then it doesn't feel like anything. Nagel utilizes the example of a bat: we can sensibly ask "what does it feel like to be a bat?" However, we are unlikely to ask "what does it seem like to be a toaster?" Nagel concludes that a bat seems mindful (i.e., has awareness) but a toaster does not. [134] In 2022, a Google engineer declared that the business's AI chatbot, LaMDA, had actually accomplished sentience, though this claim was commonly challenged by other professionals. [135]
Self-awareness: To have conscious awareness of oneself as a different person, specifically to be purposely knowledgeable about one's own thoughts. This is opposed to merely being the "subject of one's thought"-an os or debugger is able to be "familiar with itself" (that is, to represent itself in the same way it represents everything else)-but this is not what people normally indicate when they use the term "self-awareness". [g]
These characteristics have an ethical dimension. AI life would offer increase to concerns of well-being and legal protection, similarly to animals. [136] Other elements of awareness related to cognitive capabilities are likewise pertinent to the concept of AI rights. [137] Finding out how to integrate innovative AI with existing legal and social frameworks is an emergent problem. [138]
Benefits
AGI could have a large variety of applications. If oriented towards such goals, AGI might assist mitigate numerous issues in the world such as hunger, hardship and illness. [139]
AGI could enhance efficiency and efficiency in many jobs. For instance, in public health, AGI might speed up medical research, especially versus cancer. [140] It could take care of the elderly, [141] and democratize access to rapid, high-quality medical diagnostics. It might offer enjoyable, inexpensive and customized education. [141] The requirement to work to subsist could end up being obsolete if the wealth produced is correctly redistributed. [141] [142] This likewise raises the question of the location of people in a radically automated society.
AGI could likewise help to make logical choices, and to expect and avoid disasters. It might likewise help to profit of potentially catastrophic technologies such as nanotechnology or environment engineering, while avoiding the associated risks. [143] If an AGI's main goal is to avoid existential catastrophes such as human termination (which could be hard if the Vulnerable World Hypothesis turns out to be real), [144] it could take steps to considerably reduce the dangers [143] while reducing the impact of these steps on our lifestyle.
Risks
Existential dangers
AGI might represent numerous kinds of existential threat, which are dangers that threaten "the early termination of Earth-originating smart life or the long-term and drastic damage of its capacity for desirable future advancement". [145] The risk of human extinction from AGI has actually been the topic of lots of disputes, however there is also the possibility that the development of AGI would result in a completely problematic future. Notably, it might be utilized to spread and protect the set of values of whoever develops it. If humanity still has moral blind areas similar to slavery in the past, AGI may irreversibly entrench it, avoiding ethical development. [146] Furthermore, AGI could assist in mass surveillance and indoctrination, which might be utilized to create a steady repressive worldwide totalitarian routine. [147] [148] There is likewise a danger for the machines themselves. If machines that are sentient or otherwise worthy of ethical consideration are mass developed in the future, participating in a civilizational path that indefinitely neglects their well-being and interests might be an existential catastrophe. [149] [150] Considering how much AGI might enhance mankind's future and aid reduce other existential risks, Toby Ord calls these existential risks "an argument for continuing with due care", not for "abandoning AI". [147]
Risk of loss of control and human termination
The thesis that AI presents an existential risk for humans, and that this risk requires more attention, is controversial however has been backed in 2023 by many public figures, AI scientists and CEOs of AI business such as Elon Musk, Bill Gates, Geoffrey Hinton, Yoshua Bengio, Demis Hassabis and Sam Altman. [151] [152]
In 2014, Stephen Hawking slammed widespread indifference:
So, dealing with possible futures of enormous benefits and dangers, the professionals are surely doing everything possible to make sure the best outcome, right? Wrong. If a remarkable alien civilisation sent us a message saying, 'We'll show up in a couple of decades,' would we just respond, 'OK, call us when you get here-we'll leave the lights on?' Probably not-but this is basically what is happening with AI. [153]
The possible fate of humanity has often been compared to the fate of gorillas threatened by human activities. The comparison states that higher intelligence permitted mankind to control gorillas, which are now vulnerable in manner ins which they could not have prepared for. As an outcome, the gorilla has actually ended up being an endangered types, not out of malice, but just as a collateral damage from human activities. [154]
The skeptic Yann LeCun thinks about that AGIs will have no desire to control humanity which we must be cautious not to anthropomorphize them and translate their intents as we would for humans. He stated that individuals won't be "wise enough to design super-intelligent devices, yet ridiculously foolish to the point of offering it moronic goals with no safeguards". [155] On the other side, the idea of important merging recommends that practically whatever their goals, smart agents will have reasons to attempt to survive and get more power as intermediary actions to accomplishing these objectives. Which this does not require having emotions. [156]
Many scholars who are concerned about existential danger supporter for more research into resolving the "control problem" to answer the question: what kinds of safeguards, algorithms, or architectures can programmers carry out to maximise the probability that their recursively-improving AI would continue to behave in a friendly, rather than damaging, way after it reaches superintelligence? [157] [158] Solving the control problem is made complex by the AI arms race (which could cause a race to the bottom of security precautions in order to release products before rivals), [159] and the use of AI in weapon systems. [160]
The thesis that AI can position existential threat also has critics. Skeptics typically state that AGI is unlikely in the short-term, or that issues about AGI distract from other problems associated with present AI. [161] Former Google scams czar Shuman Ghosemajumder thinks about that for many individuals beyond the technology industry, existing chatbots and LLMs are already viewed as though they were AGI, causing additional misunderstanding and fear. [162]
Skeptics in some cases charge that the thesis is crypto-religious, with an illogical belief in the possibility of superintelligence changing an irrational belief in an omnipotent God. [163] Some scientists think that the interaction projects on AI existential threat by certain AI groups (such as OpenAI, Anthropic, DeepMind, and Conjecture) may be an at attempt at regulatory capture and to pump up interest in their products. [164] [165]
In 2023, the CEOs of Google DeepMind, OpenAI and Anthropic, together with other market leaders and researchers, released a joint declaration asserting that "Mitigating the risk of termination from AI need to be a worldwide concern along with other societal-scale threats such as pandemics and nuclear war." [152]
Mass unemployment
Researchers from OpenAI approximated that "80% of the U.S. workforce could have at least 10% of their work tasks affected by the intro of LLMs, while around 19% of workers may see a minimum of 50% of their tasks impacted". [166] [167] They think about workplace employees to be the most exposed, for example mathematicians, accounting professionals or web designers. [167] AGI might have a much better autonomy, capability to make choices, to user interface with other computer tools, however also to manage robotized bodies.
According to Stephen Hawking, the result of automation on the quality of life will depend upon how the wealth will be redistributed: [142]
Everyone can enjoy a life of glamorous leisure if the machine-produced wealth is shared, or many people can end up miserably poor if the machine-owners effectively lobby versus wealth redistribution. So far, the pattern appears to be toward the 2nd option, with innovation driving ever-increasing inequality
Elon Musk considers that the automation of society will require governments to embrace a universal basic income. [168]
See also
Artificial brain - Software and hardware with cognitive capabilities comparable to those of the animal or human brain AI impact AI safety - Research area on making AI safe and advantageous AI positioning - AI conformance to the desired objective A.I. Rising - 2018 film directed by Lazar Bodroža Artificial intelligence Automated artificial intelligence - Process of automating the application of artificial intelligence BRAIN Initiative - Collaborative public-private research initiative announced by the Obama administration China Brain Project Future of Humanity Institute - Defunct Oxford interdisciplinary research centre General video game playing - Ability of synthetic intelligence to play different video games Generative artificial intelligence - AI system efficient in creating material in reaction to prompts Human Brain Project - Scientific research project Intelligence amplification - Use of information technology to enhance human intelligence (IA). Machine principles - Moral behaviours of manufactured makers. Moravec's paradox. Multi-task knowing - Solving multiple device learning jobs at the very same time. Neural scaling law - Statistical law in machine knowing. Outline of artificial intelligence - Overview of and topical guide to artificial intelligence. Transhumanism - Philosophical movement. Synthetic intelligence - Alternate term for or form of artificial intelligence. Transfer learning - Machine knowing method. Loebner Prize - Annual AI competitors. Hardware for expert system - Hardware specifically designed and optimized for expert system. Weak expert system - Form of expert system.
Notes
^ a b See listed below for the origin of the term "strong AI", and see the scholastic meaning of "strong AI" and weak AI in the post Chinese space. ^ AI creator John McCarthy writes: "we can not yet define in general what kinds of computational treatments we wish to call intelligent. " [26] (For a discussion of some definitions of intelligence used by expert system scientists, see approach of synthetic intelligence.). ^ The Lighthill report particularly criticized AI's "grand goals" and led the dismantling of AI research study in England. [55] In the U.S., DARPA ended up being determined to fund just "mission-oriented direct research, rather than fundamental undirected research study". [56] [57] ^ As AI creator John McCarthy writes "it would be a fantastic relief to the rest of the workers in AI if the inventors of brand-new general formalisms would reveal their hopes in a more protected kind than has actually in some cases been the case." [61] ^ In "Mind Children" [122] 1015 cps is utilized. More recently, in 1997, [123] Moravec argued for 108 MIPS which would approximately represent 1014 cps. Moravec talks in regards to MIPS, not "cps", which is a non-standard term Kurzweil presented. ^ As defined in a basic AI book: "The assertion that makers might possibly act smartly (or, possibly much better, act as if they were intelligent) is called the 'weak AI' hypothesis by philosophers, and the assertion that makers that do so are in fact thinking (as opposed to imitating thinking) is called the 'strong AI' hypothesis." [121] ^ Alan Turing made this point in 1950. [36] References
^ Krishna, Sri (9 February 2023). "What is synthetic narrow intelligence (ANI)?". VentureBeat. Retrieved 1 March 2024. ANI is created to carry out a single job. ^ "OpenAI Charter". OpenAI. Retrieved 6 April 2023. Our mission is to ensure that artificial basic intelligence advantages all of mankind. ^ Heath, Alex (18 January 2024). "Mark Zuckerberg's brand-new objective is producing artificial general intelligence". The Verge. Retrieved 13 June 2024. Our vision is to build AI that is much better than human-level at all of the human senses. ^ Baum, Seth D. (2020 ). A Study of Artificial General Intelligence Projects for Ethics, Risk, and Policy (PDF) (Report). Global Catastrophic Risk Institute. Retrieved 28 November 2024. 72 AGI R&D tasks were recognized as being active in 2020. ^ a b c "AI timelines: What do specialists in artificial intelligence expect for the future?". Our World in Data. Retrieved 6 April 2023. ^ Metz, Cade (15 May 2023). "Some Researchers Say A.I. Is Already Here, Stirring Debate in Tech Circles". The New York City Times. Retrieved 18 May 2023. ^ "AI leader Geoffrey Hinton stops Google and cautions of danger ahead". The New York City Times. 1 May 2023. Retrieved 2 May 2023. It is tough to see how you can avoid the bad stars from using it for bad things. ^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric (2023 ). "Sparks of Artificial General Intelligence: Early experiments with GPT-4". arXiv preprint. arXiv:2303.12712. GPT-4 reveals sparks of AGI. ^ Butler, Octavia E. (1993 ). Parable of the Sower. Grand Central Publishing. ISBN 978-0-4466-7550-5. All that you touch you change. All that you change changes you. ^ Vinge, Vernor (1992 ). A Fire Upon the Deep. Tor Books. ISBN 978-0-8125-1528-2. The Singularity is coming. ^ Morozov, Evgeny (30 June 2023). "The True Threat of Artificial Intelligence". The New York Times. The genuine risk is not AI itself however the method we deploy it. ^ "Impressed by synthetic intelligence? Experts say AGI is following, and it has 'existential' risks". ABC News. 23 March 2023. Retrieved 6 April 2023. AGI could present existential threats to humankind. ^ Bostrom, Nick (2014 ). Superintelligence: Paths, Dangers, Strategies. Oxford University Press. ISBN 978-0-1996-7811-2. The first superintelligence will be the last development that mankind requires to make. ^ Roose, Kevin (30 May 2023). "A.I. Poses 'Risk of Extinction,' Industry Leaders Warn". The New York Times. Mitigating the threat of termination from AI ought to be an international top priority. ^ "Statement on AI Risk". Center for AI Safety. Retrieved 1 March 2024. AI professionals warn of risk of termination from AI. ^ Mitchell, Melanie (30 May 2023). "Are AI's Doomsday Scenarios Worth Taking Seriously?". The New York Times. We are far from developing devices that can outthink us in general ways. ^ LeCun, Yann (June 2023). "AGI does not provide an existential risk". Medium. There is no factor to fear AI as an existential hazard. ^ Kurzweil 2005, p. 260. ^ a b Kurzweil, Ray (5 August 2005), "Long Live AI", Forbes, archived from the original on 14 August 2005: Kurzweil describes strong AI as "device intelligence with the full series of human intelligence.". ^ "The Age of Artificial Intelligence: George John at TEDxLondonBusinessSchool 2013". Archived from the initial on 26 February 2014. Retrieved 22 February 2014. ^ Newell & Simon 1976, This is the term they use for "human-level" intelligence in the physical sign system hypothesis. ^ "The Open University on Strong and Weak AI". Archived from the initial on 25 September 2009. Retrieved 8 October 2007. ^ "What is artificial superintelligence (ASI)?|Definition from TechTarget". Enterprise AI. Retrieved 8 October 2023. ^ "Artificial intelligence is transforming our world - it is on everyone to make certain that it works out". Our World in Data. Retrieved 8 October 2023. ^ Dickson, Ben (16 November 2023). "Here is how far we are to achieving AGI, according to DeepMind". VentureBeat. ^ McCarthy, John (2007a). "Basic Questions". Stanford University. Archived from the initial on 26 October 2007. Retrieved 6 December 2007. ^ This list of smart traits is based on the subjects covered by significant AI books, consisting of: Russell & Norvig 2003, Luger & Stubblefield 2004, Poole, Mackworth & Goebel 1998 and Nilsson 1998. ^ Johnson 1987. ^ de Charms, R. (1968 ). Personal causation. New York: Academic Press. ^ a b Pfeifer, R. and Bongard J. C., How the body forms the method we think: a new view of intelligence (The MIT Press, 2007). ISBN 0-2621-6239-3. ^ White, R. W. (1959 ). "Motivation reevaluated: The concept of proficiency". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966. ^ White, R. W. (1959 ). "Motivation reevaluated: The idea of skills". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966. ^ Muehlhauser, Luke (11 August 2013). "What is AGI?". Machine Intelligence Research Institute. Archived from the initial on 25 April 2014. Retrieved 1 May 2014. ^ "What is Artificial General Intelligence (AGI)?|4 Tests For Ensuring Artificial General Intelligence". Talky Blog. 13 July 2019. Archived from the initial on 17 July 2019. Retrieved 17 July 2019. ^ Kirk-Giannini, Cameron Domenico; Goldstein, Simon (16 October 2023). "AI is closer than ever to passing the Turing test for 'intelligence'. What takes place when it does?". The Conversation. Retrieved 22 September 2024. ^ a b Turing 1950. ^ Turing, Alan (1952 ). B. Jack Copeland (ed.). Can Automatic Calculating Machines Be Said To Think?. Oxford: Oxford University Press. pp. 487-506. ISBN 978-0-1982-5079-1. ^ "Eugene Goostman is a genuine boy - the Turing Test says so". The Guardian. 9 June 2014. ISSN 0261-3077. Retrieved 3 March 2024. ^ "Scientists contest whether computer 'Eugene Goostman' passed Turing test". BBC News. 9 June 2014. Retrieved 3 March 2024. ^ Jones, Cameron R.; Bergen, Benjamin K. (9 May 2024). "People can not differentiate GPT-4 from a human in a Turing test". arXiv:2405.08007 [cs.HC] ^ Varanasi, Lakshmi (21 March 2023). "AI designs like ChatGPT and GPT-4 are acing everything from the bar examination to AP Biology. Here's a list of challenging tests both AI versions have actually passed". Business Insider. Retrieved 30 May 2023. ^ Naysmith, Caleb (7 February 2023). "6 Jobs Artificial Intelligence Is Already Replacing and How Investors Can Capitalize on It". Retrieved 30 May 2023. ^ Turk, Victoria (28 January 2015). "The Plan to Replace the Turing Test with a 'Turing Olympics'". Vice. Retrieved 3 March 2024. ^ Gopani, Avi (25 May 2022). "Turing Test is undependable. The Winograd Schema is obsolete. Coffee is the answer". Analytics India Magazine. Retrieved 3 March 2024. ^ Bhaimiya, Sawdah (20 June 2023). "DeepMind's co-founder recommended testing an AI chatbot's capability to turn $100,000 into $1 million to measure human-like intelligence". Business Insider. Retrieved 3 March 2024. ^ Suleyman, Mustafa (14 July 2023). "Mustafa Suleyman: My new Turing test would see if AI can make $1 million". MIT Technology Review. Retrieved 3 March 2024. ^ Shapiro, Stuart C. (1992 ). "Expert System" (PDF). In Stuart C. Shapiro (ed.). Encyclopedia of Artificial Intelligence (Second ed.). New York: John Wiley. pp. 54-57. Archived (PDF) from the initial on 1 February 2016. (Section 4 is on "AI-Complete Tasks".). ^ Yampolskiy, Roman V. (2012 ). Xin-She Yang (ed.). "Turing Test as a Defining Feature of AI-Completeness" (PDF). Artificial Intelligence, Evolutionary Computation and Metaheuristics (AIECM): 3-17. Archived (PDF) from the original on 22 May 2013. ^ "AI Index: State of AI in 13 Charts". Stanford University Human-Centered Artificial Intelligence. 15 April 2024. Retrieved 27 May 2024. ^ Crevier 1993, pp. 48-50. ^ Kaplan, Andreas (2022 ). "Expert System, Business and Civilization - Our Fate Made in Machines". Archived from the original on 6 May 2022. Retrieved 12 March 2022. ^ Simon 1965, p. 96 estimated in Crevier 1993, p. 109. ^ "Scientist on the Set: An Interview with Marvin Minsky". Archived from the initial on 16 July 2012. Retrieved 5 April 2008. ^ Marvin Minsky to Darrach (1970 ), priced estimate in Crevier (1993, p. 109). ^ Lighthill 1973; Howe 1994. ^ a b NRC 1999, "Shift to Applied Research Increases Investment". ^ Crevier 1993, pp. 115-117; Russell & Norvig 2003, pp. 21-22. ^ Crevier 1993, p. 211, Russell & Norvig 2003, p. 24 and see likewise Feigenbaum & McCorduck 1983. ^ Crevier 1993, pp. 161-162, 197-203, 240; Russell & Norvig 2003, p. 25. ^ Crevier 1993, pp. 209-212. ^ McCarthy, John (2000 ). "Reply to Lighthill". Stanford University. Archived from the original on 30 September 2008. Retrieved 29 September 2007. ^ Markoff, John (14 October 2005). "Behind Expert system, a Squadron of Bright Real People". The New York Times. Archived from the initial on 2 February 2023. Retrieved 18 February 2017. At its low point, some computer system scientists and software application engineers prevented the term synthetic intelligence for fear of being considered as wild-eyed dreamers. ^ Russell & Norvig 2003, pp. 25-26 ^ "Trends in the Emerging Tech Hype Cycle". Gartner Reports. Archived from the original on 22 May 2019. Retrieved 7 May 2019. ^ a b Moravec 1988, p. 20 ^ Harnad, S. (1990 ). "The Symbol Grounding Problem". Physica D. 42 (1-3): 335-346. arXiv: cs/9906002. Bibcode:1990 PhyD ... 42..335 H. doi:10.1016/ 0167-2789( 90 )90087-6. S2CID 3204300. ^ Gubrud 1997 ^ Hutter, Marcus (2005 ). Universal Expert System: Sequential Decisions Based on Algorithmic Probability. Texts in Theoretical Computer Science an EATCS Series. Springer. doi:10.1007/ b138233. ISBN 978-3-5402-6877-2. S2CID 33352850. Archived from the original on 19 July 2022. Retrieved 19 July 2022. ^ Legg, Shane (2008 ). Machine Super Intelligence (PDF) (Thesis). University of Lugano. Archived (PDF) from the original on 15 June 2022. Retrieved 19 July 2022. ^ Goertzel, Ben (2014 ). Artificial General Intelligence. Lecture Notes in Computer Technology. Vol. 8598. Journal of Artificial General Intelligence. doi:10.1007/ 978-3-319-09274-4. ISBN 978-3-3190-9273-7. S2CID 8387410. ^ "Who coined the term "AGI"?". goertzel.org. Archived from the initial on 28 December 2018. Retrieved 28 December 2018., through Life 3.0: 'The term "AGI" was promoted by ... Shane Legg, Mark Gubrud and Ben Goertzel' ^ Wang & Goertzel 2007 ^ "First International Summer School in Artificial General Intelligence, Main summer school: June 22 - July 3, 2009, OpenCog Lab: July 6-9, 2009". Archived from the original on 28 September 2020. Retrieved 11 May 2020. ^ "Избираеми дисциплини 2009/2010 - пролетен триместър" [Elective courses 2009/2010 - spring trimester] Факултет по математика и информатика [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the initial on 26 July 2020. Retrieved 11 May 2020. ^ "Избираеми дисциплини 2010/2011 - зимен триместър" [Elective courses 2010/2011 - winter trimester] Факултет по математика и информатика [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the initial on 26 July 2020. Retrieved 11 May 2020. ^ Shevlin, Henry; Vold, Karina; Crosby, Matthew; Halina, Marta (4 October 2019). "The limitations of device intelligence: Despite progress in device intelligence, synthetic basic intelligence is still a significant obstacle". EMBO Reports. 20 (10 ): e49177. doi:10.15252/ embr.201949177. ISSN 1469-221X. PMC 6776890. PMID 31531926. ^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric; Kamar, Ece; Lee, Peter; Lee, Yin Tat; Li, Yuanzhi; Lundberg, Scott; Nori, Harsha; Palangi, Hamid; Ribeiro, Marco Tulio; Zhang, Yi (27 March 2023). "Sparks of Artificial General Intelligence: Early experiments with GPT-4". arXiv:2303.12712 [cs.CL] ^ "Microsoft Researchers Claim GPT-4 Is Showing "Sparks" of AGI". Futurism. 23 March 2023. Retrieved 13 December 2023. ^ Allen, Paul; Greaves, Mark (12 October 2011). "The Singularity Isn't Near". MIT Technology Review. Retrieved 17 September 2014. ^ Winfield, Alan. "Artificial intelligence will not turn into a Frankenstein's beast". The Guardian. Archived from the original on 17 September 2014. Retrieved 17 September 2014. ^ Deane, George (2022 ). "Machines That Feel and Think: The Role of Affective Feelings and Mental Action in (Artificial) General Intelligence". Artificial Life. 28 (3 ): 289-309. doi:10.1162/ artl_a_00368. ISSN 1064-5462. PMID 35881678. S2CID 251069071. ^ a b c Clocksin 2003. ^ Fjelland, Ragnar (17 June 2020). "Why general expert system will not be understood". Humanities and Social Sciences Communications. 7 (1 ): 1-9. doi:10.1057/ s41599-020-0494-4. hdl:11250/ 2726984. ISSN 2662-9992. S2CID 219710554. ^ McCarthy 2007b. ^ Khatchadourian, Raffi (23 November 2015). "The Doomsday Invention: Will expert system bring us paradise or damage?". The New Yorker. Archived from the initial on 28 January 2016. Retrieved 7 February 2016. ^ Müller, V. C., & Bostrom, N. (2016 ). Future development in expert system: A survey of skilled viewpoint. In Fundamental issues of artificial intelligence (pp. 555-572). Springer, Cham. ^ Armstrong, Stuart, and Kaj Sotala. 2012. "How We're Predicting AI-or Failing To." In Beyond AI: Artificial Dreams, modified by Jan Romportl, Pavel Ircing, Eva Žáčková, Michal Polák and Radek Schuster, 52-75. Plzeň: University of West Bohemia ^ "Microsoft Now Claims GPT-4 Shows 'Sparks' of General Intelligence". 24 March 2023. ^ Shimek, Cary (6 July 2023). "AI Outperforms Humans in Creativity Test". Neuroscience News. Retrieved 20 October 2023. ^ Guzik, Erik E.; Byrge, Christian; Gilde, Christian (1 December 2023). "The originality of makers: AI takes the Torrance Test". Journal of Creativity. 33 (3 ): 100065. doi:10.1016/ j.yjoc.2023.100065. ISSN 2713-3745. S2CID 261087185. ^ Arcas, Blaise Agüera y (10 October 2023). "Artificial General Intelligence Is Already Here". Noema. ^ Zia, Tehseen (8 January 2024). "Unveiling of Large Multimodal Models: Shaping the Landscape of Language Models in 2024". Unite.ai. Retrieved 26 May 2024. ^ "Introducing OpenAI o1-preview". OpenAI. 12 September 2024. ^ Knight, Will. "OpenAI Announces a New AI Model, Code-Named Strawberry, That Solves Difficult Problems Step by Step". Wired. ISSN 1059-1028. Retrieved 17 September 2024. ^ "OpenAI Employee Claims AGI Has Been Achieved". Orbital Today. 13 December 2024. Retrieved 27 December 2024. ^ "AI Index: State of AI in 13 Charts". hai.stanford.edu. 15 April 2024. Retrieved 7 June 2024. ^ "Next-Gen AI: OpenAI and Meta's Leap Towards Reasoning Machines". Unite.ai. 19 April 2024. Retrieved 7 June 2024. ^ James, Alex P. (2022 ). "The Why, What, and How of Artificial General Intelligence Chip Development". IEEE Transactions on Cognitive and Developmental Systems. 14 (2 ): 333-347. arXiv:2012.06338. doi:10.1109/ TCDS.2021.3069871. ISSN 2379-8920. S2CID 228376556. Archived from the initial on 28 August 2022. Retrieved 28 August 2022. ^ Pei, Jing; Deng, Lei; Song, Sen; Zhao, Mingguo; Zhang, Youhui; Wu, Shuang; Wang, Guanrui; Zou, Zhe; Wu, Zhenzhi; He, Wei; Chen, Feng; Deng, Ning; Wu, Si; Wang, Yu; Wu, Yujie (2019 ). "Towards artificial general intelligence with hybrid Tianjic chip architecture". Nature. 572 (7767 ): 106-111. Bibcode:2019 Natur.572..106 P. doi:10.1038/ s41586-019-1424-8. ISSN 1476-4687. PMID 31367028. S2CID 199056116. Archived from the original on 29 August 2022. Retrieved 29 August 2022. ^ Pandey, Mohit; Fernandez, Michael; Gentile, Francesco; Isayev, Olexandr; Tropsha, Alexander; Stern, Abraham C.; Cherkasov, Artem (March 2022). "The transformational role of GPU computing and deep knowing in drug discovery". Nature Machine Intelligence. 4 (3 ): 211-221. doi:10.1038/ s42256-022-00463-x. ISSN 2522-5839. S2CID 252081559. ^ Goertzel & Pennachin 2006. ^ a b c (Kurzweil 2005, p. 260). ^ a b c Goertzel 2007. ^ Grace, Katja (2016 ). "Error in Armstrong and Sotala 2012". AI Impacts (blog site). Archived from the original on 4 December 2020. Retrieved 24 August 2020. ^ a b Butz, Martin V. (1 March 2021). "Towards Strong AI". KI - Künstliche Intelligenz. 35 (1 ): 91-101. doi:10.1007/ s13218-021-00705-x. ISSN 1610-1987. S2CID 256065190. ^ Liu, Feng; Shi, Yong; Liu, Ying (2017 ). "Intelligence Quotient and Intelligence Grade of Artificial Intelligence". Annals of Data Science. 4 (2 ): 179-191. arXiv:1709.10242. doi:10.1007/ s40745-017-0109-0. S2CID 37900130. ^ Brien, Jörn (5 October 2017). "Google-KI doppelt so schlau wie Siri" [Google AI is two times as smart as Siri - but a six-year-old beats both] (in German). Archived from the initial on 3 January 2019. Retrieved 2 January 2019. ^ Grossman, Gary (3 September 2020). "We're going into the AI twilight zone between narrow and basic AI". VentureBeat. Archived from the original on 4 September 2020. Retrieved 5 September 2020. Certainly, too, there are those who claim we are already seeing an early example of an AGI system in the just recently announced GPT-3 natural language processing (NLP) neural network. ... So is GPT-3 the very first example of an AGI system? This is arguable, but the agreement is that it is not AGI. ... If absolutely nothing else, GPT-3 tells us there is a middle ground in between narrow and general AI. ^ Quach, Katyanna. "A developer built an AI chatbot utilizing GPT-3 that helped a guy speak again to his late fiancée. OpenAI shut it down". The Register. Archived from the initial on 16 October 2021. Retrieved 16 October 2021. ^ Wiggers, Kyle (13 May 2022), "DeepMind's brand-new AI can carry out over 600 jobs, from playing games to controlling robots", TechCrunch, archived from the initial on 16 June 2022, obtained 12 June 2022. ^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric; Kamar, Ece; Lee, Peter; Lee, Yin Tat; Li, Yuanzhi; Lundberg, Scott; Nori, Harsha; Palangi, Hamid; Ribeiro, Marco Tulio; Zhang, Yi (22 March 2023). "Sparks of Artificial General Intelligence: Early explores GPT-4". arXiv:2303.12712 [cs.CL] ^ Metz, Cade (1 May 2023). "' The Godfather of A.I.' Leaves Google and Warns of Danger Ahead". The New York Times. ISSN 0362-4331. Retrieved 7 June 2023. ^ Bove, Tristan. "A.I. might rival human intelligence in 'just a few years,' says CEO of Google's main A.I. research laboratory". Fortune. Retrieved 4 September 2024. ^ Nellis, Stephen (2 March 2024). "Nvidia CEO states AI might pass human tests in five years". Reuters. ^ Aschenbrenner, Leopold. "SITUATIONAL AWARENESS, The Decade Ahead". ^ Sullivan, Mark (18 October 2023). "Why everyone seems to disagree on how to specify Artificial General Intelligence". Fast Company. ^ Nosta, John (5 January 2024). "The Accelerating Path to Artificial General Intelligence". Psychology Today. Retrieved 30 March 2024. ^ Hickey, Alex. "Whole Brain Emulation: A Huge Step for Neuroscience". Tech Brew. Retrieved 8 November 2023. ^ Sandberg & Boström 2008. ^ Drachman 2005. ^ a b Russell & Norvig 2003. ^ Moravec 1988, p. 61. ^ Moravec 1998. ^ Holmgaard Mersh, Amalie (15 September 2023). "Decade-long European research job maps the human brain". euractiv. ^ Swaminathan, Nikhil (January-February 2011). "Glia-the other brain cells". Discover. Archived from the initial on 8 February 2014. Retrieved 24 January 2014. ^ de Vega, Glenberg & Graesser 2008. A large range of views in present research study, all of which require grounding to some degree ^ Thornton, Angela (26 June 2023). "How publishing our minds to a computer system may become possible". The Conversation. Retrieved 8 November 2023. ^ Searle 1980 ^ For example: Russell & Norvig 2003, Oxford University Press Dictionary of Psychology Archived 3 December 2007 at the Wayback Machine (priced quote in" Encyclopedia.com"),. MIT Encyclopedia of Cognitive Science Archived 19 July 2008 at the Wayback Machine (estimated in "AITopics"),. Will Biological Computers Enable Artificially Intelligent Machines to Become Persons? Archived 13 May 2008 at the Wayback Machine Anthony Tongen.
^ a b c Russell & Norvig 2003, p. 947. ^ though see Explainable expert system for interest by the field about why a program behaves the method it does. ^ Chalmers, David J. (9 August 2023). "Could a Big Language Model Be Conscious?". Boston Review. ^ Seth, Anil. "Consciousness". New Scientist. Retrieved 5 September 2024. ^ Nagel 1974. ^ "The Google engineer who thinks the company's AI has actually come to life". The Washington Post. 11 June 2022. Retrieved 12 June 2023. ^ Kateman, Brian (24 July 2023). "AI Should Be Terrified of Humans". TIME. Retrieved 5 September 2024. ^ Nosta, John (18 December 2023). "Should Artificial Intelligence Have Rights?". Psychology Today. Retrieved 5 September 2024. ^ Akst, Daniel (10 April 2023). "Should Robots With Expert System Have Moral or Legal Rights?". The Wall Street Journal. ^ "Artificial General Intelligence - Do [es] the cost outweigh advantages?". 23 August 2021. Retrieved 7 June 2023. ^ "How we can Gain from Advancing Artificial General Intelligence (AGI) - Unite.AI". www.unite.ai. 7 April 2020. Retrieved 7 June 2023. ^ a b c Talty, Jules; Julien, Stephan. "What Will Our Society Look Like When Expert System Is Everywhere?". Smithsonian Magazine. Retrieved 7 June 2023. ^ a b Stevenson, Matt (8 October 2015). "Answers to Stephen Hawking's AMA are Here!". Wired. ISSN 1059-1028. Retrieved 8 June 2023. ^ a b Bostrom, Nick (2017 ). " § Preferred order of arrival". Superintelligence: paths, threats, methods (Reprinted with corrections 2017 ed.). Oxford, United Kingdom; New York City, New York City, USA: Oxford University Press. ISBN 978-0-1996-7811-2. ^ Piper, Kelsey (19 November 2018). "How technological development is making it likelier than ever that people will damage ourselves". Vox. Retrieved 8 June 2023. ^ Doherty, Ben (17 May 2018). "Climate alter an 'existential security danger' to Australia, Senate questions says". The Guardian. ISSN 0261-3077. Retrieved 16 July 2023. ^ MacAskill, William (2022 ). What we owe the future. New York, NY: Basic Books. ISBN 978-1-5416-1862-6. ^ a b Ord, Toby (2020 ). "Chapter 5: Future Risks, Unaligned Artificial Intelligence". The Precipice: Existential Risk and the Future of Humanity. Bloomsbury Publishing. ISBN 978-1-5266-0021-9. ^ Al-Sibai, Noor (13 February 2022). "OpenAI Chief Scientist Says Advanced AI May Already Be Conscious". Futurism. Retrieved 24 December 2023. ^ Samuelsson, Paul Conrad (2019 ). "Artificial Consciousness: Our Greatest Ethical Challenge". Philosophy Now. Retrieved 23 December 2023. ^ Kateman, Brian (24 July 2023). "AI Should Be Terrified of Humans". TIME. Retrieved 23 December 2023. ^ Roose, Kevin (30 May 2023). "A.I. Poses 'Risk of Extinction,' Industry Leaders Warn". The New York City Times. ISSN 0362-4331. Retrieved 24 December 2023. ^ a b "Statement on AI Risk". Center for AI Safety. 30 May 2023. Retrieved 8 June 2023. ^ "Stephen Hawking: 'Transcendence takes a look at the implications of expert system - however are we taking AI seriously enough?'". The Independent (UK). Archived from the initial on 25 September 2015. Retrieved 3 December 2014. ^ Herger, Mario. "The Gorilla Problem - Enterprise Garage". Retrieved 7 June 2023. ^ "The remarkable Facebook debate between Yann LeCun, Stuart Russel and Yoshua Bengio about the risks of strong AI". The fascinating Facebook debate between Yann LeCun, Stuart Russel and Yoshua Bengio about the risks of strong AI (in French). Retrieved 8 June 2023. ^ "Will Expert System Doom The Mankind Within The Next 100 Years?". HuffPost. 22 August 2014. Retrieved 8 June 2023. ^ Sotala, Kaj; Yampolskiy, Roman V. (19 December 2014). "Responses to catastrophic AGI threat: a survey". Physica Scripta. 90 (1 ): 018001. doi:10.1088/ 0031-8949/90/ 1/018001. ISSN 0031-8949. ^ Bostrom, Nick (2014 ). Superintelligence: Paths, Dangers, Strategies (First ed.). Oxford University Press. ISBN 978-0-1996-7811-2. ^ Chow, Andrew R.; Perrigo, Billy (16 February 2023). "The AI Arms Race Is On. Start Worrying". TIME. Retrieved 24 December 2023. ^ Tetlow, Gemma (12 January 2017). "AI arms race risks spiralling out of control, report warns". Financial Times. Archived from the initial on 11 April 2022. Retrieved 24 December 2023. ^ Milmo, Dan; Stacey, Kiran (25 September 2023). "Experts disagree over risk posed but synthetic intelligence can not be disregarded". The Guardian. ISSN 0261-3077. Retrieved 24 December 2023. ^ "Humanity, Security & AI, Oh My! (with Ian Bremmer & Shuman Ghosemajumder)". CAFE. 20 July 2023. Retrieved 15 September 2023. ^ Hamblin, James (9 May 2014). "But What Would the End of Humanity Mean for Me?". The Atlantic. Archived from the initial on 4 June 2014. Retrieved 12 December 2015. ^ Titcomb, James (30 October 2023). "Big Tech is stoking fears over AI, alert scientists". The Telegraph. Retrieved 7 December 2023. ^ Davidson, John (30 October 2023). "Google Brain founder says huge tech is lying about AI extinction threat". Australian Financial Review. Archived from the original on 7 December 2023. Retrieved 7 December 2023. ^ Eloundou, Tyna; Manning, Sam; Mishkin, Pamela; Rock, Daniel (17 March 2023). "GPTs are GPTs: An early take a look at the labor market effect capacity of big language models". OpenAI. Retrieved 7 June 2023. ^ a b Hurst, Luke (23 March 2023). "OpenAI states 80% of workers might see their jobs affected by AI. These are the tasks most impacted". euronews. Retrieved 8 June 2023. ^ Sheffey, Ayelet (20 August 2021). "Elon Musk states we need universal basic earnings due to the fact that 'in the future, physical work will be a choice'". Business Insider. Archived from the original on 9 July 2023. Retrieved 8 June 2023. Sources
UNESCO Science Report: the Race Against Time for Smarter Development. Paris: UNESCO. 11 June 2021. ISBN 978-9-2310-0450-6. Archived from the initial on 18 June 2022. Retrieved 22 September 2021. Chalmers, David (1996 ), The Conscious Mind, Oxford University Press. Clocksin, William (August 2003), "Artificial intelligence and the future", Philosophical Transactions of the Royal Society A, vol. 361, no. 1809, pp. 1721-1748, Bibcode:2003 RSPTA.361.1721 C, doi:10.1098/ rsta.2003.1232, PMID 12952683, S2CID 31032007. Crevier, Daniel (1993 ). AI: The Tumultuous Look For Expert System. New York City, NY: BasicBooks. ISBN 0-465-02997-3. Darrach, Brad (20 November 1970), "Meet Shakey, the First Electronic Person", Life Magazine, pp. 58-68. Drachman, D. (2005 ), "Do we have brain to spare?", Neurology, 64 (12 ): 2004-2005, doi:10.1212/ 01. WNL.0000166914.38327. BB, PMID 15985565, S2CID 38482114. Feigenbaum, Edward A.; McCorduck, Pamela (1983 ), The Fifth Generation: Artificial Intelligence and Japan's Computer Challenge to the World, Michael Joseph, ISBN 978-0-7181-2401-4. Goertzel, Ben; Pennachin, Cassio, eds. (2006 ), Artificial General Intelligence (PDF), Springer, ISBN 978-3-5402-3733-4, archived from the initial (PDF) on 20 March 2013. Goertzel, Ben (December 2007), "Human-level artificial basic intelligence and the possibility of a technological singularity: a reaction to Ray Kurzweil's The Singularity Is Near, and McDermott's review of Kurzweil", Expert system, vol. 171, no. 18, Special Review Issue, pp. 1161-1173, doi:10.1016/ j.artint.2007.10.011, archived from the initial on 7 January 2016, obtained 1 April 2009. Gubrud, Mark (November 1997), "Nanotechnology and International Security", Fifth Foresight Conference on Molecular Nanotechnology, archived from the initial on 29 May 2011, retrieved 7 May 2011. Howe, J. (November 1994), Artificial Intelligence at Edinburgh University: a Perspective, archived from the initial on 17 August 2007, recovered 30 August 2007. Johnson, Mark (1987 ), The body in the mind, Chicago, ISBN 978-0-2264-0317-5. Kurzweil, Ray (2005 ), The Singularity is Near, Viking Press. Lighthill, Professor Sir James (1973 ), "Expert System: A General Survey", Artificial Intelligence: a paper symposium, Science Research Council. Luger, George; Stubblefield, William (2004 ), Artificial Intelligence: Structures and Strategies for Complex Problem Solving (5th ed.), The Benjamin/Cummings Publishing Company, Inc., p. 720, ISBN 978-0-8053-4780-7. McCarthy, John (2007b). What is Expert system?. Stanford University. The ultimate effort is to make computer system programs that can fix problems and attain objectives worldwide in addition to people. Moravec, Hans (1988 ), Mind Children, Harvard University Press Moravec, Hans (1998 ), "When will computer hardware match the human brain?", Journal of Evolution and Technology, vol. 1, archived from the initial on 15 June 2006, obtained 23 June 2006 Nagel (1974 ), "What Is it Like to Be a Bat" (PDF), Philosophical Review, 83 (4 ): 435-50, doi:10.2307/ 2183914, JSTOR 2183914, archived (PDF) from the initial on 16 October 2011, obtained 7 November 2009 Newell, Allen; Simon, H. A. (1976 ). "Computer Technology as Empirical Inquiry: Symbols and Search". Communications of the ACM. 19 (3 ): 113-126. doi:10.1145/ 360018.360022. Nilsson, Nils (1998 ), Artificial Intelligence: A New Synthesis, Morgan Kaufmann Publishers, ISBN 978-1-5586-0467-4 NRC (1999 ), "Developments in Expert System", Funding a Transformation: Government Support for Computing Research, National Academy Press, archived from the original on 12 January 2008, recovered 29 September 2007 Poole, David; Mackworth, Alan; Goebel, Randy (1998 ), Computational Intelligence: A Rational Approach, New York: Oxford University Press, archived from the initial on 25 July 2009, retrieved 6 December 2007 Russell, Stuart J.; Norvig, Peter (2003 ), Expert System: A Modern Approach (second ed.), Upper Saddle River, New Jersey: Prentice Hall, ISBN 0-13-790395-2 Sandberg, Anders; Boström, Nick (2008 ), Whole Brain Emulation: A Roadmap (PDF), Technical Report # 2008-3, Future of Humanity Institute, Oxford University, archived (PDF) from the original on 25 March 2020, recovered 5 April 2009 Searle, John (1980 ), "Minds, Brains and Programs" (PDF), Behavioral and Brain Sciences, 3 (3 ): 417-457, doi:10.1017/ S0140525X00005756, S2CID 55303721, archived (PDF) from the original on 17 March 2019, retrieved 3 September 2020 Simon, H. A. (1965 ), The Shape of Automation for Men and Management, New York: Harper & Row Turing, Alan (October 1950). "Computing Machinery and Intelligence". Mind. 59 (236 ): 433-460. doi:10.1093/ mind/LIX.236.433. ISSN 1460-2113. JSTOR 2251299. S2CID 14636783.
de Vega, Manuel; Glenberg, Arthur; Graesser, Arthur, eds. (2008 ), Symbols and Embodiment: Debates on meaning and cognition, Oxford University Press, ISBN 978-0-1992-1727-4 Wang, Pei; Goertzel, Ben (2007 ). "Introduction: Aspects of Artificial General Intelligence". Advances in Artificial General Intelligence: Concepts, Architectures and Algorithms: Proceedings of the AGI Workshop 2006. IOS Press. pp. 1-16. ISBN 978-1-5860-3758-1. Archived from the initial on 18 February 2021. Retrieved 13 December 2020 - through ResearchGate.
Further reading
Aleksander, Igor (1996 ), Impossible Minds, World Scientific Publishing Company, ISBN 978-1-8609-4036-1 Azevedo FA, Carvalho LR, Grinberg LT, Farfel J, et al. (April 2009), "Equal varieties of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain", The Journal of Comparative Neurology, 513 (5 ): 532-541, doi:10.1002/ cne.21974, PMID 19226510, S2CID 5200449, archived from the original on 18 February 2021, retrieved 4 September 2013 - via ResearchGate Berglas, Anthony (January 2012) [2008], Expert System Will Kill Our Grandchildren (Singularity), archived from the original on 23 July 2014, retrieved 31 August 2012 Cukier, Kenneth, "Ready for Robots? How to Consider the Future of AI", Foreign Affairs, vol. 98, no. 4 (July/August 2019), pp. 192-98. George Dyson, historian of computing, composes (in what may be called "Dyson's Law") that "Any system easy enough to be easy to understand will not be complicated enough to behave smartly, while any system made complex enough to behave wisely will be too complicated to comprehend." (p. 197.) Computer researcher Alex Pentland writes: "Current AI machine-learning algorithms are, at their core, dead simple stupid. They work, but they work by brute force." (p. 198.). Gelernter, David, Dream-logic, the Internet and Artificial Thought, Edge, archived from the original on 26 July 2010, retrieved 25 July 2010. Gleick, James, "The Fate of Free Choice" (evaluation of Kevin J. Mitchell, Free Agents: How Evolution Gave Us Free Will, Princeton University Press, 2023, 333 pp.), The New York City Review of Books, vol. LXXI, no. 1 (18 January 2024), pp. 27-28, 30. "Agency is what differentiates us from makers. For biological creatures, reason and purpose come from acting in the world and experiencing the effects. Artificial intelligences - disembodied, complete strangers to blood, sweat, and tears - have no event for that." (p. 30.). Halal, William E. "TechCast Article Series: The Automation of Thought" (PDF). Archived from the initial (PDF) on 6 June 2013. - Halpern, Sue, "The Coming Tech Autocracy" (evaluation of Verity Harding, AI Needs You: How We Can Change AI's Future and Save Our Own, Princeton University Press, 274 pp.; Gary Marcus, Taming Silicon Valley: How We Can Ensure That AI Works for Us, MIT Press, 235 pp.; Daniela Rus and Gregory Mone, The Mind's Mirror: Risk and Reward in the Age of AI, Norton, 280 pp.; Madhumita Murgia, Code Dependent: Residing In the Shadow of AI, Henry Holt, 311 pp.), The New York City Review of Books, vol. LXXI, no. 17 (7 November 2024), pp. 44-46. "' We can't reasonably anticipate that those who want to get rich from AI are going to have the interests of the rest of us close at heart,' ... composes [Gary Marcus] 'We can't count on federal governments driven by project finance contributions [from tech business] to push back.' ... Marcus information the demands that people should make from their governments and the tech companies. They include openness on how AI systems work; settlement for individuals if their information [are] utilized to train LLMs (large language design) s and the right to permission to this use; and the capability to hold tech companies accountable for the harms they trigger by getting rid of Section 230, enforcing cash penalites, and passing more stringent item liability laws ... Marcus likewise suggests ... that a new, AI-specific federal agency, comparable to the FDA, the FCC, or the FTC, might provide the most robust oversight ... [T] he Fordham law teacher Chinmayi Sharma ... recommends ... develop [ing] an expert licensing program for engineers that would operate in a comparable method to medical licenses, malpractice suits, and the Hippocratic oath in medicine. 'What if, like medical professionals,' she asks ..., 'AI engineers also vowed to do no harm?'" (p. 46.). Holte, R. C.; Choueiry, B. Y. (2003 ), "Abstraction and reformulation in expert system", Philosophical Transactions of the Royal Society B, vol. 358, no. 1435, pp. 1197-1204, doi:10.1098/ rstb.2003.1317, PMC 1693218, PMID 12903653. Hughes-Castleberry, Kenna, "A Murder Mystery Puzzle: The literary puzzle Cain's Jawbone, which has stumped human beings for decades, exposes the limitations of natural-language-processing algorithms", Scientific American, vol. 329, no. 4 (November 2023), pp. 81-82. "This murder mystery competitors has exposed that although NLP (natural-language processing) designs are capable of amazing feats, their abilities are quite limited by the quantity of context they receive. This [...] might cause [troubles] for researchers who wish to utilize them to do things such as evaluate ancient languages. Sometimes, there are few historical records on long-gone civilizations to work as training information for such a function." (p. 82.). Immerwahr, Daniel, "Your Lying Eyes: People now utilize A.I. to generate fake videos equivalent from real ones. Just how much does it matter?", The New Yorker, 20 November 2023, pp. 54-59. "If by 'deepfakes' we indicate realistic videos produced using artificial intelligence that really trick individuals, then they barely exist. The phonies aren't deep, and the deeps aren't fake. [...] A.I.-generated videos are not, in general, operating in our media as counterfeited evidence. Their function better looks like that of animations, particularly smutty ones." (p. 59.). - Leffer, Lauren, "The Risks of Trusting AI: We need to prevent humanizing machine-learning models used in clinical research study", Scientific American, vol. 330, no. 6 (June 2024), pp. 80-81. Lepore, Jill, "The Chit-Chatbot: forum.batman.gainedge.org Is talking with a device a discussion?", The New Yorker, 7 October 2024, pp. 12-16. Marcus, Gary, "Artificial Confidence: Even the newest, buzziest systems of artificial general intelligence are stymmied by the usual issues", Scientific American, vol. 327, no. 4 (October 2022), pp. 42-45. McCarthy, John (October 2007), "From here to human-level AI", Expert System, 171 (18 ): 1174-1182, doi:10.1016/ j.artint.2007.10.009. McCorduck, Pamela (2004 ), Machines Who Think (second ed.), Natick, Massachusetts: A. K. Peters, ISBN 1-5688-1205-1. Moravec, Hans (1976 ), The Role of Raw Power in Intelligence, archived from the original on 3 March 2016, retrieved 29 September 2007. Newell, Allen; Simon, H. A. (1963 ), "GPS: A Program that Simulates Human Thought", in Feigenbaum, E. A.; Feldman, J. (eds.), Computers and Thought, New York City: McGraw-Hill. Omohundro, Steve (2008 ), The Nature of Self-Improving Artificial Intelligence, presented and distributed at the 2007 Singularity Summit, San Francisco, California. Press, Eyal, "In Front of Their Faces: Does facial-recognition technology lead cops to overlook contradictory evidence?", The New Yorker, 20 November 2023, pp. 20-26. Roivainen, Eka, "AI's IQ: ChatGPT aced a [standard intelligence] test but showed that intelligence can not be determined by IQ alone", Scientific American, vol. 329, no. 1 (July/August 2023), p. 7. "Despite its high IQ, ChatGPT stops working at tasks that require genuine humanlike thinking or an understanding of the physical and social world ... ChatGPT appeared unable to factor rationally and tried to depend on its vast database of ... truths stemmed from online texts. " - Scharre, Paul, "Killer Apps: The Real Dangers of an AI Arms Race", Foreign Affairs, vol. 98, no. 3 (May/June 2019), pp. 135-44. "Today's AI technologies are powerful but undependable. Rules-based systems can not deal with situations their programmers did not expect. Learning systems are restricted by the data on which they were trained. AI failures have already led to disaster. Advanced autopilot functions in cars, although they perform well in some scenarios, have driven cars and trucks without cautioning into trucks, concrete barriers, and parked cars and trucks. In the incorrect scenario, AI systems go from supersmart to superdumb in an immediate. When an enemy is attempting to control and hack an AI system, the dangers are even higher." (p. 140.). Sutherland, J. G. (1990 ), "Holographic Model of Memory, Learning, and Expression", International Journal of Neural Systems, vol. 1-3, pp. 256-267. - Vincent, James, "Horny Robot Baby Voice: James Vincent on AI chatbots", London Review of Books, vol. 46, no. 19 (10 October 2024), pp. 29-32." [AI chatbot] programs are enabled by new technologies but depend on the timelelss human tendency to anthropomorphise." (p. 29.). Williams, R. W.; Herrup, K.