Skip to content

  • Projects
  • Groups
  • Snippets
  • Help
    • Loading...
    • Help
    • Contribute to GitLab
  • Sign in / Register
A
aircrew
  • Project
    • Project
    • Details
    • Activity
    • Cycle Analytics
  • Issues 31
    • Issues 31
    • List
    • Board
    • Labels
    • Milestones
  • Merge Requests 0
    • Merge Requests 0
  • CI / CD
    • CI / CD
    • Pipelines
    • Jobs
    • Schedules
  • Wiki
    • Wiki
  • Snippets
    • Snippets
  • Members
    • Members
  • Collapse sidebar
  • Activity
  • Create a new issue
  • Jobs
  • Issue Boards
  • Adela Edmund la Touche
  • aircrew
  • Issues
  • #15

You need to sign in or sign up before continuing.
Closed
Open
Opened Apr 11, 2025 by Adela Edmund la Touche@adelarya98813
  • Report abuse
  • New issue
Report abuse New issue

DeepSeek Open-Sources DeepSeek-R1 LLM with Performance Comparable To OpenAI's O1 Model


DeepSeek open-sourced DeepSeek-R1, an LLM fine-tuned with support knowing (RL) to enhance reasoning ability. DeepSeek-R1 attains results on par with OpenAI's o1 design on a number of criteria, consisting of MATH-500 and SWE-bench.

DeepSeek-R1 is based upon DeepSeek-V3, a mix of experts (MoE) model just recently open-sourced by DeepSeek. This base design is fine-tuned using Group Relative Policy Optimization (GRPO), a reasoning-oriented variant of RL. The research study group also performed understanding distillation from DeepSeek-R1 to open-source Qwen and Llama models and forum.pinoo.com.tr released numerous versions of each; these designs surpass bigger models, consisting of GPT-4, on mathematics and coding benchmarks.

[DeepSeek-R1 is] the initial step toward improving language model reasoning abilities using pure reinforcement knowing (RL). Our objective is to check out the capacity of LLMs to establish reasoning abilities without any monitored data, focusing on their self-evolution through a pure RL ...DeepSeek-R1 ... master a broad variety of tasks, consisting of creative writing, general concern answering, it-viking.ch modifying, summarization, and more. Additionally, wiki.myamens.com DeepSeek-R1 demonstrates impressive efficiency on tasks requiring long-context understanding, significantly outperforming DeepSeek-V3 on long-context criteria.

To develop the model, DeepSeek started with DeepSeek-V3 as a base. They initially attempted fine-tuning it just with RL, and with no monitored fine-tuning (SFT), producing a model called DeepSeek-R1-Zero, which they have likewise released. This model displays strong reasoning efficiency, but" powerful reasoning habits, it deals with a number of problems. For example, DeepSeek-R1-Zero fights with challenges like bad readability and language mixing."

To address this, the group utilized a brief phase of SFT to prevent the "cold start" problem of RL. They gathered numerous thousand examples of chain-of-thought reasoning to utilize in SFT of DeepSeek-V3 before running RL. After the RL procedure assembled, they then gathered more SFT information utilizing rejection tasting, leading to a dataset of 800k samples. This dataset was used for additional fine-tuning and to produce the distilled designs from Llama and Qwen.

DeepSeek evaluated their model on a variety of reasoning, mathematics, and coding criteria and compared it to other models, including Claude-3.5- Sonnet, GPT-4o, and o1. DeepSeek-R1 exceeded all of them on numerous of the standards, including AIME 2024 and MATH-500.

DeepSeek-R1 Performance. Image Source: DeepSeek-R1 Technical Report

Within a few days of its release, the LMArena revealed that DeepSeek-R1 was ranked # 3 overall in the arena and # 1 in coding and mathematics. It was also tied for # 1 with o1 in "Hard Prompt with Style Control" classification.

Django framework co-creator Simon Willison blogged about his try outs one of the DeepSeek distilled Llama models on his blog site:

Each action begins with a ... pseudo-XML tag containing the chain of thought utilized to assist create the response. [Given the timely] "a joke about a pelican and a walrus who run a tea space together" ... It then thought for 20 paragraphs before outputting the joke! ... [T] he joke is awful. But the procedure of getting there was such a fascinating insight into how these new models work.

Andrew Ng's newsletter The Batch blogged about DeepSeek-R1:

DeepSeek is rapidly emerging as a strong home builder of open designs. Not only are these designs excellent entertainers, but their license allows use of their outputs for distillation, potentially pushing forward the cutting-edge for language models (and multimodal designs) of all sizes.

The DeepSeek-R1 models are available on HuggingFace.

About the Author

Anthony Alford

Rate this Article

This content remains in the AI, ML & Data Engineering subject

Related Topics:

- AI, ML & Data Engineering

  • Generative AI
  • Large language designs

    - Related Editorial

    Related Sponsored Content

    - [eBook] Starting with Azure Kubernetes Service

    Related Sponsor

    Free services for AI apps. Are you ready to experiment with cutting-edge technologies? You can begin developing intelligent apps with free Azure app, information, and AI services to reduce in advance expenses. Discover more.

    How could we enhance? Take the InfoQ reader survey

    Each year, we seek feedback from our readers to help us enhance InfoQ. Would you mind spending 2 minutes to share your feedback in our short study? Your feedback will straight help us continually evolve how we support you. The InfoQ Team Take the survey

    Related Content

    The InfoQ Newsletter

    A round-up of last week's content on InfoQ sent out every Tuesday. Join a community of over 250,000 senior developers.
Assignee
Assign to
None
Milestone
None
Assign milestone
Time tracking
None
Due date
No due date
0
Labels
None
Assign labels
  • View project labels
Reference: adelarya98813/aircrew#15